Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T21:52:38.288Z Has data issue: false hasContentIssue false

Zirconia Inert Matrix Fuel for Plutonium and Minor Actinides Management in Reactors and as an Ultimate Waste Form

Published online by Cambridge University Press:  01 February 2011

Claude Degueldre
Affiliation:
[email protected], PSI, NES, OHLD 08, Villigen, CH-5232, Switzerland, +41 56 310 4176
Wolfgang Wiesenack
Affiliation:
[email protected], OECD Halden Reactor Project, Halden, 1751, Norway
Get access

Abstract

A plutonia stabilised zirconia doped with yttria and erbia has been selected as inert matrix fuel (IMF) at PSI. The results of experimental irradiation tests on yttria-stabilised zirconia doped with plutonia and erbia pellets in the Halden research reactor as well as a study of zirconia solubility are presented. Zirconia must be stabilised by yttria to form a solid solution such as MAz(Y,Er)yPuxZr1-yO2-ζ where minor actinides (MA) oxides are also soluble. (Er,Y,Pu,Zr)O2-ζ (with Pu containing 5% Am) was successfully prepared at PSI and irradiated in the Halden reactor. Emphasis is given on the zirconia-IMF properties under in-pile irradiation, on the fuel material centre temperatures and on the fission gas release. The retention of fission products in zirconia may be stronger at similar temperature, compared to UO2. The outstanding behaviour of plutonia-zirconia inert matrix fuel is compared to the classical (U,Pu)O2 fuels. The properties of the spent fuel pellets are presented focusing on the once through strategy. For this strategy, low solubility of the inert matrix is required for geological disposal. This parameter was studied in detail for a range of solutions corresponding to groundwater under near field conditions. Under these conditions the IMF solubility is about 109 times smaller than glass, several orders of magnitude lower than UO2 in oxidising conditions (Yucca Mountain) and comparable in reducing conditions, which makes the zirconia material very attractive for deep geological disposal. The behaviour of plutonia-zirconia inert matrix fuel is discussed within a burn and bury strategy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Degueldre, C. Yamashita, T. J. Nucl. Mater. 319 (2003) 15 and 6-187Google Scholar
2 Degueldre, C. Schramm, R. J. Nucl. Mater. 352 (2006) 254255 and 256-377Google Scholar
3 Akie, H. Muromura, T. Takano, H. Matsuura, S. Nucl. Technol. 107 (1994) 182.Google Scholar
4 Degueldre, C. Kasemeyer, U. Botta, F. Ledergerber, G. Mat. Res. Soc. Proc. 412 (1996) 1523.Google Scholar
5 Ferguson, K. Trans. Am. Nucl. Soc. 75 (1996) 75.Google Scholar
6 Paratte, J.M. Chawla, R. Ann. Nucl. Energy 22 (1995) 471481.10.1016/0306-4549(94)00061-IGoogle Scholar
7 Lombardi, C. Mazzola, A. Ann. Nucl. Energy 23 (1996) 11171126.Google Scholar
8 Porta, J. Baldi, S. Guigon, B. Proc. ARWIF'98, OECD-NEA workshop (PSI-Villigen Oct. 1998).Google Scholar
9 Degueldre, C. Paratte, J.M.. Nucl. Technol. 123 (1998) 2129.Google Scholar
10 Sickafus, K.E. Matzke, HJ. Hartmann, TH. Yasuda, K. Valdez, J. A., Chodak, P. III, Nastasi, M., Verrall, R.A. J. Nucl. Mater. 274 (1999) 6677.Google Scholar
11 Clinard, F.W. Jr., Rohr, D.L. Ranken, W. J. Amer. Ceram. Soc. 60 (1977) 287288.Google Scholar
12 VANCE, E.R. BOLAND, J.N. Rad. Effects 37, (1978) 237239.Google Scholar
13 Schram, R.P. Bakker, K. Hein, H. Boshoven, J. G. Laan, R. Van Der, Sciolla, C. Yamashita, T. Hellwig, C. Ingold, F. Conrad, R. Casalta, S.. Proc. 6th IMF, Progr. Nucl. Energy 38 (2001) 259262.Google Scholar
14 Kasemeyer, U. , Hellwig, C. Lee, Y.W. Ledergerber, G. Song, D.S. Gates, G.A. Wiesenack, W.. Proc. 6th IMF, Progr. Nucl. Energy 38 (2001) 309312.Google Scholar
15 Lumpkin, G.R. J. Nucl. Mater. 274 (1999) 206217.Google Scholar
16 Yokokawa, H. Sakai, N. Kawada, T. Dokiya, M. J. Austral. Ceram. Soc. 28 (1992) 194.Google Scholar
17 Ledergerber, G. Degueldre, C. Heimgartner, P. Pouchon, M.A. Kasemeyer, U. Proc. 6th IMF Workshop, in Prog. Nucl. Energy, 38 (2001) 301308.10.1016/S0149-1970(00)00122-0Google Scholar
18 Lee, Y.W. Kim, H.S. Kim, S.H. Joung, C.Y. Na, S.H. Ledergerber, G. Heimgartner, P. Pouchon, M. Burghartz, M.. J. Nucl. Mater. 274 (1999) 7.10.1016/S0022-3115(99)00094-XGoogle Scholar
19 Kasemeyer, U. Joo, H.-K., Ledergerber, G.. J. Nucl. Mater. 274 (1999) 160166.Google Scholar
20 Berthou, V. Degueldre, C. Magill, J. J. Nucl. Mater. 320 (2003) 156162.Google Scholar
21 Curti, E. Degueldre, C. Radiochim. Acta, 90 (2002) 801804.Google Scholar
22 Michel, N. Etude de la solubilité des oxides et oxohydroxides de zirconium caractérisé, Thèse de Doctorat de l'Université de Nantes, Oct. 2005 Google Scholar
23 Adair, J. H. Denkewicz, R. P. Arriaga, F.J. Ceram. Trans 1 (1987) 135137.Google Scholar
24 Curti, E. Courvisier, J.L. Morvan, G. Karpoff, A.M. Appl.Geochem., 21 (2006) 11521168.Google Scholar
25 Hummel, W.. Pure Appl. Chem. 77 (2005) 631641.Google Scholar
26 Kovalenko, P.N. Bagdasarov, K.N. Russ. J. Inorg. Chem. 6 (1961) 272275.Google Scholar
27 Pouchon, M. Curti, E. Degueldre, C. Tobler, L. Progr. Nucl. Energy 38 (2001) 443446.10.1016/S0149-1970(00)00155-4Google Scholar
28 Ekberg, C. Kälvenius, G., Albinsson, Y. Brown, P.L. J. Sol. Chem., 133 (2004) 4779.10.1023/B:JOSL.0000026645.41309.d3Google Scholar