Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:10:37.565Z Has data issue: false hasContentIssue false

Zinc Oxide Nanorod Films for Electrochemical Urea Biosensor

Published online by Cambridge University Press:  03 August 2011

Netzahualcóyotl Palomera
Affiliation:
Department of Mechanical Engineering, University of Puerto Rico, Call Box 9000, Mayagüez, PR 00681-9000.
Marcia Balaguera
Affiliation:
Department of Chemistry, University of Puerto Rico, Call Box 9000, Mayagüez, PR 00681-9000.
Sunil K. Arya
Affiliation:
Bio-MEMS and Microsystem Lab, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, United States.
Samuel Hernández
Affiliation:
Department of Chemistry, University of Puerto Rico, Call Box 9000, Mayagüez, PR 00681-9000.
Maharaj S. Tomar
Affiliation:
Department of Physics, University of Puerto Rico, Call Box 9000, Mayagüez, PR 00681-9000.
Jaime E. Ramírez-Vick
Affiliation:
Department of Engineering Science & Materials, University of Puerto Rico, Call Box 9000, Mayagüez, PR 00681-9000.
Surinder P. Singh
Affiliation:
Department of Engineering Science & Materials, University of Puerto Rico, Call Box 9000, Mayagüez, PR 00681-9000.
Get access

Abstract

Metal oxide nanostructures have shown significant promise for biosensors, gas sensors, photocatalyst and other biomedical applications. Among these, zinc oxide (ZnO) nanostructures, exhibiting interesting properties such as high catalytic activity, biocompatibility, high isoelectric point, large surface to volume ratio, make them a good candidate for biosensing applications. Here we report the synthesis of ZnO nanorods (ZnONR) on ITO films in aqueous phase and its application in Urea biosensor fabrication. ZnONR have been synthesized by a two-step method, first seed growth of ZnO by sputtering on ITO films followed by decomposition of zinc nitrate hexahydrate / hexamethylenetetramine (HMT) in aqueous phase. Exploiting the high isoelectric point of ZnO, a Urease/ZnONR/ITO bioelectrode has been fabricated by physical binding of Urease (Urs) onto ZnONRs. X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and cyclic voltammetry (CV) have been used to characterize ZnONR and the Urs/ZnONR/ITO bioelectrode. The FE-SEM and XRD measurements confirm the formation of ZnONR. The electrochemical data from the Urs/ZnONR/ITO biolectrode reveal linearity between 1-11 mM with sensitivity of 0.9 μA/mM and a relatively low Michaelis-Menten constant (Km) of 5.01 mM for urea sensing. The results indicate the potential of ZnONR films for fabrication of commercial biosensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solanki, P. R., Kaushik, A., Agrawal, V. V., Malhotra, B. D., NPG Asia Mater. 3, 17 (2011).10.1038/asiamat.2010.137Google Scholar
2. Zhao, Z., Lei, W., Zhang, X., Wang, B., Jiang, H., Sensors 10, 1216 (2010).10.3390/s100201216Google Scholar
3. Singh, S. P., Arya, S. K., Pandey, P., Malhotra, B. D., Saha, S., Sreenivas, K., Gupta, V., Appl. Phys. Lett. 91, 063901 (2007).10.1063/1.2768302Google Scholar
4. Joshi, P., Chakraborti, S., Chakrabarti, P., Haranath, D., Shanker, V., Ansari, Z. A., Singh, S. P., Gupta, V., J. Nanosci. Nanotech. 9, 6427 (2009).10.1166/jnn.2009.1584Google Scholar
5. Solanki, P. R., Kaushik, A., Ansari, A. A., Sumana, G. and Malhorta, B. D., Appl. Phys. Lett. 93, 163093 (2008).10.1063/1.2980448Google Scholar
6. Singh, M., Verma, N., Garg, A. K., Redhu, N., Sens. Actuat. B 134, 345 (2008).10.1016/j.snb.2008.04.025Google Scholar
7. Tiwari, A., Aryal, S., Pilla, S., Gong, S., Talanta 78, 1401 (2009).10.1016/j.talanta.2009.02.038Google Scholar
8. Song, J.J., Lim, S.W., J. Phys. Chem. C 111, 596 (2007).10.1021/jp0655017Google Scholar
9. Kaushik, A., Solanki, P. R., Ansari, A. A., Sumana, G., Ahmad, S., Malhotra, B. D., Sens. Actuators B 138, 572 (2009).10.1016/j.snb.2009.02.005Google Scholar
10. Laviron, E., J. Electroanal. Chem. 101, 19 (1979).10.1016/S0022-0728(79)80075-3Google Scholar
11. Saha, S., Arya, S.K., Singh, S.P., Sreenivas, K., Malhotra, B.D., Gupta, V., Anal. Chim. Acta 653, 212 (2009).10.1016/j.aca.2009.09.002Google Scholar
12. Ansari, S.G., Wahab, R., Ansari, Z. A., Kim, Y-S., Khang, G, Al-Hajry, A., Shin, H-S., Sens. Actuat. B 137, 566 (2009).10.1016/j.snb.2009.01.018Google Scholar