Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:47:43.505Z Has data issue: false hasContentIssue false

Zinc Diffusion in GaAs-AIGaAs Heterojunction Bipolar Transistor Structures

Published online by Cambridge University Press:  28 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue Murray Hill, NJ 07974
A. S. Jordan
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue Murray Hill, NJ 07974
Get access

Abstract

We have examined the diffusion of Zn from the base of GaAs-AIGaAs heterojunction bipolar transistor (HBT) structures during growth by organometallic vapor phase epitaxy. The role of Si doping in the emitter-contact, emitter, and collector/subcollector in enhancing the Zn diffusion has been determined by separately doping each layer. For a growth temperature of 675°C Zn shows no observable redistribution up to concentrations of 3x1019 cm−3 without Si doping. The addition of Si to the adjacent AIGaAs emitter and GaAs collector/subcollector layers causes significant diffusion from the base, while Si doping of the GaAs emitter-contact results in even greater Zn redistribution. Silicon counter-doping in the base region retards the Zn diffusion. These results are consistent with a recent model which shows that the n-type surface layer enhances the formation of gallium interstitials which diffuse into the structure and displace the Zn in the base via a kick-out mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ishibashi, T., Yamauchi, Y., Nakajima, O., Nagata, K. and Ito, H., IEEE Electron Device Lett., EDL–8 194 (1987)Google Scholar
[2] Topham, P. J., Parton, J. G., Golder, M. J., Hollis, B. H., Hiams, N. A., Goodfellow, R. C. and Cook, M. P., Electron Lett. 25, 432 (1989).Google Scholar
[3] Nottenburg, R. N., Chen, Y. K., Panish, M. B., Humphrey, D. A. and Hamm, R., IEEE Electron Device Lett. EDL-10 30 (1989).Google Scholar
[4] Jalali, B., Nottenburg, R. N., Chen, Y. K., Levi, A.F.J., Sivco, D., Cho, A. Y. and Humphrey, D. A., Appl. Phys. Lett. 54 2333 (1989).Google Scholar
[5] Enquist, P., Lunardi, L. M., Welch, D. F., Wicks, G. W., Shealy, J. R., Eastman, L. F. and Calawa, A. R., Inst. Phys. Conf. Ser. 74 599 (1985).Google Scholar
[6] Enquist, P. M., J. Cryst. Growth 93 637 (1988).Google Scholar
[7] Enquist, P., Hutchby, J. A. and Lyon, T. J. de, J. Appl. Phys. 63 4485 (1988).Google Scholar
[8] Nordell, N., Ojala, P., Berlo, W. H. van, Landgren, G. and Linnarsson, M. K., J. Appl. Phys. 67 778 (1990).Google Scholar
[9] Tischler, M. A., Baratte, H., Kuech, T. F. and Wang, P.-J., J. Cryst. Growth 93, 631 (1988).Google Scholar
[10] Evans East, Inc., Plainsboro, 'NJ 08536.Google Scholar
[11] Kuech, T. F., Wang, P.-J.. Tischler, M. A., Potemski, R., Scilla, G. J. and Cardone, F., J. Cryst. Growth 93 624 (1988).Google Scholar
[12] Hobson, W. S., Pearton, S. J., Schubert, E. F. and Cabaniss, G., Appl. Phys. Lett. 55, 1546 (1989).Google Scholar
[13] Casey, H. C., in Atomic Diffusion in Semiconductors, edited by Shaw, D. (Plenum, London, 1973), p. 351, and references therein.Google Scholar
[14] Gösele, U. and Morehead, F., J. Appl. Phys. 52 4617 (1981).Google Scholar
[15] Ball, R. K., Hutchinson, P. W., and Dobson, P. S., Phil. Mag. A43 1299 (1981).Google Scholar
[16] Deppe, D. G., Appl. Phys. Lett. 56 370 (1990).Google Scholar