Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T07:31:07.048Z Has data issue: false hasContentIssue false

Zinc and Zinc Oxide Nanowires Grown on PEDOT:PSS/SiO2 Conductive Polymer Thin Films by Vapor Phase Transport Deposition

Published online by Cambridge University Press:  27 September 2011

Matthew P. Chamberlin
Affiliation:
Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22801, U.S.A.
Costel Constantin
Affiliation:
Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22801, U.S.A.
Get access

Abstract

Easily available spin coating and vapor phase transport deposition techniques offer tremendous possibilities in fabricating inorganic/organic heterojunctions. We present here preliminary results from different thin film growth mechanisms including: i) PEDOT:PSS/Zn-nanowires/SiO2, ii) Zn-nanowires/PEDOT:PSS/SiO2, and iii) ZnO-nanowires/PEDOT:PSS/SiO2. The preliminary scanning electron microscopy and energy dispersive spectroscopy results show that Zn nanowires bond better to the non-annealed PEDOT:PSS thin films. It was also found that ZnO nanowires grow homogeneously on annealed PEDOT:PSS surfaces with colloidal Au nanoparticles as bonding reaction catalysts.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Groenendaal, L.B., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Adv. Mater. 12, 481 (2000).Google Scholar
2. Nardes, A.M., Kemerink, M., de Kok, M.M., Vinken, E., Maturova, K., and Janssen, R.A.J., Organic Electronics 9, 727 (2008).Google Scholar
3. Granstrom, M., Berggren, M., and Ingana, O., Science 267, 1479 (1995).Google Scholar
4. Dhanabalan, J.K.J. van Duren, P.A. van Hal, J.L.J. van Dongen, , and Janssen, R.A.J., Adv. Funct. Mater. 11, 255 (2001).Google Scholar
5. Jonas, F. and Wolf, G.D., U.S. Patent No. 05403467 (1995).Google Scholar
6. Setiadi, D., He, Z., Hajto, J., and Binnie, T.D., Infrared Phys. Technol. 40, 267 (1999).Google Scholar
7. Beek, W.J.E., Wienk, M.M., Kemerink, M., Yang, X., and Janssen, R.A.J., J. Phys. Chem. 109, 9505 (2005).10.1021/jp050745xGoogle Scholar
8. Zhang, T., Xu, Z., Tao, D.L., Teng, F., Li, F.S., Zheng, M.J., and Xu, X.R., Nanotechnology 16, 2861 (2005).Google Scholar
9. Garganourakis, M., Logothetidis, S., Pitsalidis, C., Georgiou, D., Kassavetis, S., and Laskarakis, A., Thin Solid Films 517, 6409 (2009).Google Scholar
10. Sharma, B.K., Khare, N., and Ahmad, S., Solid State Comm. 149, 771 (2009).Google Scholar
11. Semaltianos, N.G., Logothetidis, S., Hastas, N., Perrie, W., Romani, S., Potter, R.J., Dearden, G., Watkins, K.G., French, P., and Sharp, M., Chem. Phys. Lett. 484, 283 (2010).10.1016/j.cplett.2009.11.054Google Scholar
12. Martin, M.N., Basham, J.I., Chando, P., and Eah, S.K., Langmuir 26, 10 (2010).Google Scholar
13. Wang, S.J. and Park, H.H., J. Electroceram. 18, 161 (2007).Google Scholar
14. Xia, Y. and Ouyang, J., J. Mater. Chem. 21, 4927 (2011).Google Scholar
15. Kang, K.S., Lim, H.K., Cho, K.Y., Han, K.J., and Kim, J., J. Phys. D: Appl. Phys. 41, 012003 (2008).Google Scholar
16. Nardes, A.M., Kemerink, M., Janssen, R.A.J., Bastiaansen, J.A.M., Kiggen, N.M.M., Langeveld, B.M.W., van Breemen, A.J.J.J., and de Kok, M.M., Adv. Mater. 19, 1196 (2007).Google Scholar
17. Badre, C., Pauporté, T., Turmine, M., Lincot, D., Nanotechnology 18, 365705 (2007).Google Scholar
18. Meng, X.Q., Zhao, D.X., Zhang, J.Y., Shen, D.Z., Lu, Y.M., Dong, L., Xiao, Z.Y., Liu, Y.C., and Fan, X.W., Chem. Phys. Lett. 413, 450 (2005).Google Scholar
19. Li, G., Wang, B., Liu, Y., Tan, T., Song, X., and Yan, H., Appl. Surf. Sci. 255, 3112 (2008).Google Scholar