Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:55:03.309Z Has data issue: false hasContentIssue false

Young's Modulus and Density of thin TiO2 Films Produced by Different Methods

Published online by Cambridge University Press:  15 February 2011

C. R. Ottermann
Affiliation:
Schott Glaswerke, R&D, P.O. Box 24 80, D-55014 Mainz, Germany
R. Kuschnereit
Affiliation:
Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
O. Anderson
Affiliation:
Schott Glaswerke, R&D, P.O. Box 24 80, D-55014 Mainz, Germany
P. Hess
Affiliation:
Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
K. Bange
Affiliation:
Schott Glaswerke, R&D, P.O. Box 24 80, D-55014 Mainz, Germany
Get access

Abstract

The Young's modulus and density are analyzed for 280 and 500 nm thick TiO2 layers deposited by reactive evaporation (RE) and ion plating (IP) by means of surface acoustic wave spectroscopy (SAWS) and grazing incidence X-ray reflection spectroscopy (GIXR). The layers are amorphous or polycrystalline, and have densities between 2.9 g/cm3 and 3.8 g/cm3, depending on the deposition conditions. The measured Young's moduli vary between 65 GPa for RE films and 147 GPa for IP layers. They are independent of film thickness, but correlate with the density. A change of the Young's modulus due to the phase transition from amorphous to anatase is described, which occurs at temperatures above 210°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ottermann, C.R. et al., Mater. Res. Soc. Symp. Proc. 308, 69 (1993); Ottermann, C.R. et al., Mater. Res. Soc. Symp. Proc. 308, 69 (1993); 356, 187 (1995)Google Scholar
[2] Scott, M.L., Natl. Bur. Stand. (U.S.) Spec. Publ. 688, 329 (1985)Google Scholar
[3] Minnear, W.P. and Bradt, R.C., J. Am. Ceram. Soc. 60, 458 (1977)Google Scholar
[4] Grimsditch, M.H. and Ramdas, A.K., Phys. Rev. B14, 1670 (1976)Google Scholar
[5] Bange, K. et al., BMFT-Abschluβbericht FKZ 13 N 5476/6 (1991)Google Scholar
[6] Ottermann, C.R., Temmink, A., and Bange, K., Proc. SPIE 1272, 111 (1990)Google Scholar
[7] Ottermann, C.R. and Bange, K., in preparationGoogle Scholar
[8] Stanglmeier, F., Lengeler, B., Weber, W., Göbel, H., and Schuster, M., Acta Crystallogr. A 48, 626 (1992)Google Scholar
[9] Philips Analytical X-ray. NL-AlmeloGoogle Scholar
[10] Meng, L.-J. and Santos, M.P. dos, Thin Solid Films 226, 22 (1993)Google Scholar
[11] Coufal, H., Grygier, R., Hess, P., and Neubrand, A., J. Acoust. Soc. Am. 92, 2980 (1992)Google Scholar
[12] Farwell, G.W., Acoustic Surface Waves, edited by Oliner, A.A. (Springer, Berlin, 1978), p. 42 Google Scholar
[13] Laube, M., Wagner, W., Rauch, F., Ottermann, C., Bange, K., and Niederwald, H., Glass Sci. Technol. 67, 87 (1994)Google Scholar