Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T06:50:46.206Z Has data issue: false hasContentIssue false

The Yield Stress of the Fully-Lamellar Microstructure

Published online by Cambridge University Press:  15 February 2011

Y. Q. Sun*
Affiliation:
Wright Laboratory, Materials Directorate, WL/MLLM, and Systran Corp., Dayton, Ohio, USA.
Get access

Abstract

This paper is an inquiry into the relationship between the yield stress and the two length parameters in the fully-lamellar polycrystalline microstructure, the grain-size dCB and the lamellar thickness dLM. Deformation in the multilayer structure is assumed to proceed by dislocations propagating in the formation of a succession of mutually interacting pileups, blocked at the lamellar interfaces and piled-up ultimately against the grain boundary. An important case suggested is a yield stress independent of the grain size, sensitive only to the lamellar spacing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y.W., Journal of Metals, 46(7), 30 (1994).Google Scholar
2. Yamaguchi, M. and Inui, H., in Structural Intermetallics, eds Darolia, R. et al (TMS, 1993), pp. 127142.Google Scholar
3. Dimiduk, D.M., in Gamma Titanium Aluminides, eds Kim, Y.-W. et al (TMS, 1995), p. 1.Google Scholar
4. Kim, Y.W., in Gamma Titanium Aluminides, eds Kim, Y.-W. et al (TMS 1995), pp. 637654.Google Scholar
5. Liu, C.T. et al, in Gamma Titanium Aluminides, eds Kim, Y.-W. et al (TMS, 1995), pp. 679688.Google Scholar
6. Hall, E.O., E.O., , Proc. Phys. Soc, B64, 747 (1951).Google Scholar
7. Petch, N.J., J. Iron Steel Inst., 174, 25 (1953).Google Scholar
8. Armstrong, R.W. and Douthwaite, R.M., MRS Proceedings, 362, 41 (1995).Google Scholar
9. Umakoshi, Y., Nakano, T. and Yamane, T., Mat. Sci. and Eng., A152, 81 (1992).Google Scholar
10. Liu, C.T., Schneibel, J.H., Maziasz, P.J., Wright, J.L., J.L., and Easton, D.S., 1996, Intermetallics, 4, 429 (1996).Google Scholar
11. Kad, B., Dao, G. and Asaro, R.J., 1995, Mat. Sci. Eng., A192/193, 97 (1995).Google Scholar
12. Cottrell, A.H., Trans. Am. Inst. Min. Engrs., 212, 192 (1958).Google Scholar
13. Eshelby, J.D., Frank, F.C. and Nabarro, F.R.N., Phil. Mag., 42, 351 (1951).Google Scholar
14. Sun, Y.Q., Phil. Mag., 1996 (submitted).Google Scholar
15. Hirth, J.P. and Lothe, J., Theory of Dislocations, John Wiley and Sons, New York, 1982.Google Scholar