Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:26:49.512Z Has data issue: false hasContentIssue false

XRD analysis of TRAM composed from [Sb2Te3/GeTe] superlattice film and its switching characteristics

Published online by Cambridge University Press:  24 February 2015

T. Ohyanagi
Affiliation:
Low-power Electronics Association & Projects, AIST West7A, Tsukuba, Japan
M. Kitamura
Affiliation:
Low-power Electronics Association & Projects, AIST West7A, Tsukuba, Japan
S. Kato
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
M. Araidai
Affiliation:
Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
N. Takaura
Affiliation:
Low-power Electronics Association & Projects, AIST West7A, Tsukuba, Japan
K. Shiraishi
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
Get access

Abstract

We studied GeTe structures in topological switching random access memories (TRAMs) with a [GeTe/Sb2Te3] superlattice by using X-ray diffraction (XRD) analysis. We examined the electrical characteristics of the TRAMs deposited at different temperatures. We found that XRD spectra differed between the films deposited at 200 and 240°C and that the differences corresponded to the differences in the GeTe sequences in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Simpson, R. E., Fons, P., Kolobov, A. V., Fukaya, T., Krbal, M., Yagi, T. and Tominaga, J., Nature Nanotech. 6, 501 (2011).CrossRefGoogle Scholar
Tominaga, J., Fons, P., Kolobov, A. V., Shima, T., Chong, T. C., Zhao, R., Lee, H. K. and Shi, L., Jpn. J. Appl. Phys. 47, 5763 (2008).CrossRefGoogle Scholar
Ohyanagi, T., Takaura, N., Tai, M., Kitamura, M., Kinoshita, M., Akita, K., Morikawa, T., Kato, S., Araidai, M., Kamiya, K., Yamamoto, T. and Shiraishi, K., IEDM Tech Dig. 2013 30.5 (2013).Google Scholar
Sa, Baisheng, Zhou, Jian, Sun, Zhimei, Tominaga, Junji, and Ahuja, Rajeev, Phys. Rev. Lett. 109, 096802 (2012).CrossRefGoogle Scholar
Zhang, Haijun, Liu, Chao-Xing, Qi, Xiao-Liang, Dai, Xi, Fang, Zhong and Zhang, Shou-Cheng, Nature Physics 5, 438 (2009).CrossRefGoogle Scholar
Tai, M., Ohyanagi, T., Kinoshita, M., Morikawa, T., Akita, K., Kato, S., Shirakawa, H., Araidai, M., Shiraishi, K. and Takaura, N., 2014 Symposium on VSLI Technology 22.4 (2014)Google Scholar
Ohyanagi, T., Takaura, N., Kitamura, M., Tai, M., Kinoshita, M., Akita, K., Morikawa, M. and Tominaga, J., Jpn. J. Appl. Phys. 52, 05FF01 (2013).CrossRefGoogle Scholar
Izumi, F. and Momma, K., Solid State Phenom., 130, 15 (2007).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B54, 11169 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B50, 17953 (1994);CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B59, 1758 (1999).CrossRefGoogle Scholar