Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-08T01:47:39.071Z Has data issue: false hasContentIssue false

X-Ray Studies of GaAs/Si and ZnS/Si

Published online by Cambridge University Press:  26 February 2011

H. M. Kim
Affiliation:
SUNY-Buffalo, Dept. of ECE, 201 Bonner, Amherst, NY 14260
Y-W Choi
Affiliation:
SUNY-Buffalo, Dept. of ECE, 201 Bonner, Amherst, NY 14260
S. Vernon
Affiliation:
SPIRE Corporation, Bedford, MA 01730
P. S. Moise
Affiliation:
SPIRE Corporation, Bedford, MA 01730
C. R. Wie
Affiliation:
SUNY-Buffalo, Dept. of ECE, 201 Bonner, Amherst, NY 14260
Get access

Abstract

The MOCVD-grown layers of GaAs/Si(001), InP/GaAs/Si(001), and ZnS/Si(111) were studied using X-ray rocking curve (XRC), double crystal topography (DCT), and Nomarski phase contrast microscopy. The layer qualities of GaAs/Si, InP/GaAs, and InP/GaAs/Si from the XRC full width at half maximum (FWHM) agreed well with these determined from the Nomarski phase contrast microscopy. The in-plane lattice mismatch (parallel X-ray strain) was 3.71% for GaAs/Si. In the double heteroepitaxial layer (InP/GaAs/Si), the parallel X-ray strain of GaAs was 4.03% with respect to Si. The parallel X-ray strain was larger than the perpendicular X-ray strain in GaAs/Si, perhaps due to the mismatch in thermal expansion coefficients between GaAs and Si. Dislocation densities estimated from the rocking curve linewidth were 5.30 × 107 cm−2 for GaAs/Si, 3.27 × 108 cm−2 for InP/GaAs. We also present the double crystal X-ray topographs of the III-V/Si and II-VI/Si samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Uppal, P.N. and Kroemer, H., J.Appl.Phys. 58, 2195 (1985)Google Scholar
[2] Nishimura, T., Mizuguchi, K., Hayafuji, N., and Murotani, T., Jpn.J.Appl. Phys. 26, L1141 (1987)Google Scholar
[3] Sakamoto, T. and Hashiguchi, G., Jpn.J.Appl.Phys. 25,L57(1986)Google Scholar
[4] Kawabe, M. and Ueda, T., Jpn.J.Appl.Phys. 25, L285 (1986)Google Scholar
[5] Chong, T.C. and Fonstad, C.G., J.Vac.Sci.Technol. B5, 815(1987)Google Scholar
[6] Lee, J.W., Shichijo, H., Tsai, H.L., and Matyi, R.J., Appl.Phys.Lett. 50, 31 (1987)CrossRefGoogle Scholar
[7] Chand, N., People, R., Baiocchi, F.A., Wecht, K.W., and Cho, A.Y., Appl.Phys. Lett. 49, 815 (1986)Google Scholar
[8] Stolz, W., Nagamura, M., and Horikoshi, Y., Jpn.J.Appl.Phys. 27, L283(1988)Google Scholar
[9] Verson, S.M., Pearton, S.J., Gibson, J.M., Caruso, R., Abernathy, C.R., Short, K.Y., Stavola, M., Haven, V.E., and Jacobson, D.C., Mater.Res.Soc.Symp. Proc. 91, 187 (1987)Google Scholar
[10] Castagne, J., Fontaine, C., Bedel, E., and Munoz-Yague, A., J.Appl.Phys. 64, 2372 (1988)Google Scholar
[11] Kaneda, S., Satou, S., Setoyama, T., Motoyama, S-I, Yokoyama, M., and Ota, N., J.Cryst.Growth 76, 440 (1986)Google Scholar
[12] Yoneda, K., Toda, T., Hishida, Y., and Niina, T., J.Cryst.Growth, 67, 125 (1984)Google Scholar
[13] Yokoyama, M. and Ohta, S-I, J.Appl.Phys. 59, 3919 (1986)Google Scholar
[14] Yokoyama, M., Kashiro, K-I, and Ohta, S-I, Appl.Phys.Lett. 49, 411 (1986)Google Scholar
[15] Yongnian, Y., Hickey, C.F., and Gibson, U.J., Thin Solid Films 151, 207 (1987)Google Scholar
[16] Sekula, P.A., Vernon, S.M., and Keavney, C.J., Mater.Res.Soc.Symp.Proc. 91, 405 (1987)Google Scholar
[17] Wie, C.R., Kim, H.M., and Lau, K.M., Proc. SPIE 877, 41 (1988)Google Scholar
[18] Gay, P., Hirsch, P.B., and Kelly, A., Acta Met. 1, 315 (1953)Google Scholar
[19] Matyi, R.J., Lee, J.W., and Schaake, H.F., J.Elec.Mater. 17, 87 (1988)Google Scholar
[20] Lum, R.M., Klingert, J.K., Davidson, B.A., and Lamont, M.G., Mater.Res.Soc. Symp.Proc. 91, 125 (1987)Google Scholar