Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:42:02.308Z Has data issue: false hasContentIssue false

X-Ray Structural Study of Li3N at High Pressure

Published online by Cambridge University Press:  10 February 2011

Allen C. Ho
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Maurice K. Granger
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Arthur L. Ruoff
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

The equation of state (EOS) of Li3N has been determined by energy-dispersive x-ray diffraction (EDXD) using synchrotron radiation up to 35 GPa at ambient temperature. Both the hexagonal D6h4(P63/mmc) and the hexagonal D6h1(P6/mmm) phases were present at ambient pressure. The D6h1 -structure completely transforms into the D6h4 -structure at modest pressure. The change in Gibb's free energy as a function of pressure for Li3N was calculated using the experimental EOS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rabenau, A., in Advances in Solid State Physics, edited by Treusch, J. (Vieweg Braunschweig, 1978), Vol. 18, p. 77 - 108; Solid State Ionics 6, 277 (1982).Google Scholar
2. Boukamp, B. A. and Huggins, R. A., Mat. Res. Bull. 13, 23 (1978).Google Scholar
3. Bhattacharya, G., Bilz, H., Brendecke, H., Chandrasekhar, H. R., Migoni, R., Müller, G., Rabenau, A., Reiser, B., Schönherr, E., Schulz, H., Von Alpen, U., and Wagner, E., in Proceedings of the International Conference on Lattice Dynamics (Flammarion Sciences, 1978), p. 133 - 135.Google Scholar
4. Schulz, H. and Schwarz, K., Acta Cryst. A 43, 999 (1978).Google Scholar
5. Haberkorn, R., Buchanan, M., and Bilz, H., Solid State Commun. 12, 681 (1973).Google Scholar
6. Rabenau, A. and Schulz, H., J. Less Common Metals 50, 155 (1976).Google Scholar
7. Mali, M., Roos, J., and Brinkmann, D., Phys. Rev. B 36, 3888 (1987).Google Scholar
8. Mitrokhina, S., Burdina, K., and Semeneko, K., Moscow Univ. Chem. Bull. 45, 89 (1990).Google Scholar
9. Kress, W., Grimm, H., Press, W., and Lefebvre, J., Phys. Rev. B 22, 4620 (1980).Google Scholar
10. Chandrasekhar, H. R., Bhattacharya, G., Migoni, R., and Bilz, H., Solid State Commun. 22, 681 (1977); Phys. Rev. B 17, 884 (1978).Google Scholar
11. Sarnthein, J., Schwarz, K., and Blöchl, P. E., Phys. Rev. B 53, 9084 (1996-II).Google Scholar
12. Xie, Y., Qian, Y., Wang, W., Zhang, S., and Zhang, Y., Science 272, 1926 (1996).Google Scholar
13. Karpinski, J., Jun, J., and Porowski, S., J. Cryst. Growth 66, 1 (1984).Google Scholar
14. Mao, H. K., Bell, P. M., Shaner, J. W., and Steinberg, D. J., J. Appl. Phys. 49, 3276 (1978).Google Scholar
15. Birch, F., J. Geophys. Res. 83, 1257 (1978).Google Scholar