Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:33:17.441Z Has data issue: false hasContentIssue false

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions

Published online by Cambridge University Press:  01 February 2011

Olivier Thomas
Affiliation:
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Audrey Loubens
Affiliation:
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Patrice Gergaud
Affiliation:
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Get access

Abstract

X-ray diffraction was recognized from the early days as highly sensitive to atomic displacements. Indeed structural crystallography has been very successful in locating with great precision the position of atoms within an individual unit cell. In disordered systems it is the average structure and fluctuations about it that may be determined. In the field of mechanics diffraction may thus be used to evaluate elastic displacement fields. In this short overview we give examples from recent work where x-ray diffraction has been used to investigate average strains in lines, films or multilayers. In small objects the proximity of surfaces or interfaces may create very inhomogeneous displacement fields. X-ray scattering is again one of the best methods to determine such distributions. The need to characterize displacement fields in nanostructures together with the advent of third generation synchrotron radiation sources has generated new and powerful methods (anomalous diffraction, coherent diffraction, microdiffraction, …). We review some of the recent and promising results in the field of strain measurements in small dimensions via X-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See e.g. Birnbaum, J., Williams, R., Phys. Today Jan 2000.Google Scholar
[2] Arzt, E., Prog. Mat. Sci. 46, 283 (2001).Google Scholar
[3] Lester, H. and Aborn, R., Army Ordnance 6, 120 (1925).Google Scholar
[4] Sachs, G., Weerts, J., Z. Physik 64, 344 (1930).Google Scholar
[5] Noyan, I. and Cohen, J., Residual stress: Measurement by diffraction and interpretation, (Springer, New York, 1987).Google Scholar
[6] Clemens, B. and Bain, J., MRS Bulletin 17–7, 46 (1992).Google Scholar
[7] Besser, P., Brennan, S., Bravman, J., J. Mat. Res. 9, 13 (1996).Google Scholar
[8] Thomas, O., Shen, Q., Schieffer, P., Tournerie, N., Lepine, B., Phys. Rev. Lett. 90, 017205 (2003).Google Scholar
[9] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).Google Scholar
[10] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., Appl. Phys. Lett. 75, 914 (1999).Google Scholar
[11] Raabe, D., Sachtleber, M., Zhao, Z., Roters, F., Zaefferer, S., Acta Mat. 49, 3433 (2001).Google Scholar
[12] Spolenak, R., Brown, W., Tamura, N., MacDowell, A., Celestre, R., Padmore, H., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B., Patel, J., Phys. Rev. Lett. 90, 096102 (2003). See also this proceeding.Google Scholar
[13] Bergemann, C., Keymeulen, H., J.F. van der Veen, Phys. Rev. Lett. 91, 204801 (2003).Google Scholar
[14] Williamson, G., Hall, W., Acta Met. 1, 52 (1953).Google Scholar
[15] Mittemeijer, E. J., Scardi, P., Diffraction Analysis of the Microstructure of Materials, Springer-Verlag, Berlin Heidelberg 2004.Google Scholar
[16] Shen, Q., Kycia, S., Phys. Rev. B 55, 15791 (1997).Google Scholar
[17] Robinson, I.K., Vartanyants, I., Appl. Surf. Sci. 182, 186 (2001).Google Scholar
[18] Holy, V., Darhuber, A., Bauer, G., Wang, P., Song, Y., Sotomayor Torres, C., Holland, M., Phys. Rev. B 52, 8348 (1995).Google Scholar
[19] Bocquet, F., Gergaud, P. and Thomas, O., J. Appl. Cryst. 36, 154 (2003).Google Scholar
[20] Renevier, H., Hodeau, J-L., Wolfers, P., Andrieu, S., Weigelt, J., Frahm, R., Phys. Rev. Lett. 78, 2775 (1997).Google Scholar
[21] Bigault, T., Bocquet, F., Labat, S., Thomas, O., Renevier, H., Phys. Rev B. 64, 125414 (2001).Google Scholar
[22] Letoublon, A., Favre-Nicolin, V., Renevier, H., Proietti, M.G., Monat, C., Gendry, M., Marty, O., Priester, C., Phys. Rev. Lett. 92, 186101 (2004).Google Scholar
[23] Kaganer, V., Jenichen, B., Paris, G., Ploog, K., Konovalov, O., Mikulik, P., Arai, S., Phys. Rev. B 66, 035310 (2002).Google Scholar
[24] Loubens, A., Fortunier, R., Thomas, O., to be published.Google Scholar
[25] Joo, H.D., Kim, J.S., Kim, K.H., Tamura, N. and Koo, Y.M., Scripta Materialia 51, 1183 (2004).Google Scholar
[26] Erdélyi, Z., Sladecek, M., Stadler, L-M., Zizak, I., Langer, G. A., Kis-Varga, M., Beke, D. and Sepiol, B., Science 306, 1913 (2004).Google Scholar
[27] Gergaud, P., Rivero, C., Gailhanou, M., Thomas, O., Froment, B., Jaouen, H., Mat. Sci. Eng. B 114–115, 67 (2004).Google Scholar
[28] Bérar, J.-F., Blanquart, L., Boudet, N., Breugnon, P., Caillot, B., Clemens, J.-C., Delpierre, P., Koudobine, I., Mouget, C., Potheau, R. and Valin, I. J. Appl. Cryst. 35, 471 (2002).Google Scholar
[29] Orthen, A., Wagner, H., Martoiu, S., Amenitsch, H., Bernstorff, S., Besch, H.-J., Menk, R.-H., Nurdan, K., Rappolt, M., Walenta, A. H. and Werthenbach, U., J. Synchrotron Rad. 11, 177 (2004).Google Scholar