Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:49:15.517Z Has data issue: false hasContentIssue false

X-ray Photoelectron Spectroscopy Evaluation on Surface Chemical States of GaN, InGaN and AlGaN Heteroepitaxial Thin Films Grown on Sapphire by MOCVD

Published online by Cambridge University Press:  10 February 2011

K. Li
Affiliation:
Institute of Materials Research and Engineering, Singapore, 117602, [email protected]
A.T.S. Wee
Affiliation:
National University of Singapore, Kent Ridge Road, Singapore, 119260
J. Lin
Affiliation:
National University of Singapore, Kent Ridge Road, Singapore, 119260
Z. C. Feng
Affiliation:
Institute of Materials Research and Engineering, Singapore, 117602, [email protected]
S.J. Chua
Affiliation:
Institute of Materials Research and Engineering, Singapore, 117602, [email protected] National University of Singapore, Kent Ridge Road, Singapore, 119260
Get access

Abstract

The surface chemical states of MOCVD grown GaN, AlGaN and InGaN, and the influence of different dopants have been studied with x-ray photoelectron spectroscopy (XPS). The results show that for most of the samples the N 1s peak can be fitted with a dominant GaN peak at the binding energy of 397.2 ± 0.2 eV and a small N-H peak at the binding energy of 398.5 ± 0.2 eV, while Ga 3d can be deconvoluted into three peaks, i.e., elemental Ga at 18.5 ± 0.1 eV, GaN at 19.7 ± 0.1 eV, and Ga2O3 at 20.4 ± 0.1 eV. Si-doping appears to have small influence on the surface chemical states of GaN. Compared with Si-doping, the influence of Mg-doping appears -to be larger. In addition to a change in the component intensities, Mg-doping also causes the N ls and Ga 3d peaks to broaden. The ternary AlxGa1−xN (x ∼ 0.025) sample shows aluminum surface segregation, while the undoped InxGa1−xN(x ∼0.12) shows indium surface deficiency

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Strite, S., Lin, M. E. and Morkoc, H., Thin Solid Films, 231, 197 (1993).Google Scholar
2 Detchprohm, T., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Crystal Growth, 145, 192 (1994).Google Scholar
3 Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys., 76, 8189 (1994).Google Scholar
4 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, 1687 (1994).Google Scholar
5 Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett., 62, 2390 (1993).Google Scholar
6 Nakamura, S., and Mukai, T., Jpn. J Appl. Phys., 31, L1457 (1992).Google Scholar
7 Hwang, C.-Y., Lu, P., Mayo, W. E., Lu, Y., and Liu, H., Mat. Res. Soc. Symp. Proc., 326, 347 (1994).Google Scholar
8 Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys., 32, L16 (1993).Google Scholar
9 Lin, M. E., Strite, S., Agarwal, A., Salvador, A., Zhou, G. L., and Teraguchi, N., Appl. Phys. Lett., 62, 702 (1993).Google Scholar
10 Holmes, L., Fertitta, K. G., Ciuba, F. J. and Dupuis, R. D., Electron. Lett., 30, 1252 (1994).Google Scholar
11 , Yuan, Salagai, T., Gurary, A., Zawadzki, P., Chern, C. S., Kroll, W., Stall, R. A., Li, Y., Schurman, M., Hwang, C.-Y., Mayo, W. E., Lu, Y. and Pearton, S. J., J Electrochem. Soc., 142, L163 (1995).Google Scholar
12 , Yuan, Salagai, T., Gurary, A., Thompson, A. G., Kroll, W., Stall, R. A., Hwang, C.-Y., Schurman, M., Li, Y., Mayo, W. E., Lu, Y., Krishnankutty, S., Shmagin, I. K., Kolbas, R. M. and Pearton, S. J., J. Vac. Sci. Technol. B., 13, 2075 (1995).Google Scholar
13 , Chandrasekhar, Smith, D. J., Strite, S., Lin, M. E. and Morkoc, H., J. Crystal Growth, 152, 135 (1995).Google Scholar
14 Guo, Q., Ogawa, H., Yamano, H., and Yoshida, A., Appl. Phys. Lett., 66, 715 (1995).Google Scholar
15 , Kapolnek, Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett., 67, 1541 (1995).Google Scholar
16 Vispute, R. D., Wu, H., and Narayan, J., Appl. Phys. Lett., 67, 1549 (1995).Google Scholar
17 Vispute, R. D., Narayan, J., Wu, H., and Jagannadham, K., J. Appl. Phys., 77, 4724 (1995).Google Scholar
18 Bu, Y., Lin, M. C., Fu, L. P., Chtchekine, D. G., Gilliland, G. D., Chen, Y., Ralph, S. E. and Stock, S. R., Appl. Phys. Lett., 66, 2433 (1995).Google Scholar
19 Zhang, X., Kung, P., Saxler, A., Walker, D., Wang, T. C., and Razeghi, M., Appl. Phys. Lett., 67, 1745 (1995).Google Scholar
20 Wickenden, D. K., Bargeron, C. B., Bryden, W. A., Miragliotta, J. and Kistenmacher, T. J., Appl. Phys. Lett., 65, 2024 (1994).Google Scholar
21 Ueta, Y., Sato, H., Sakai, S., Fukui, M., J. Crystal Growth, 145, 203 (1994).Google Scholar
22 VG Scientific Conipany Technical Document TD 8618.Google Scholar
23 Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, USA, 1992.Google Scholar
24 Kubler, L., Hlil, E. K., Bolmont, D., and Peruchetti, J. C., Thin Solid Films, 149, 385 (1987).Google Scholar
25 Taylor, J. A., J Vac. Sci. Technol., 20, 751 (1982).Google Scholar