Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:45:12.375Z Has data issue: false hasContentIssue false

X-Ray Photoelectron Spectroscopy Analysis of Silicon Oxide Deposited by a Nitrous Oxide/Silane Glow Discharge

Published online by Cambridge University Press:  21 February 2011

J. H. Thomas III
Affiliation:
RCA Laboratories, Princeton, NJ 08540
G. Kaganowicz
Affiliation:
RCA Laboratories, Princeton, NJ 08540
Get access

Abstract

Thin layers (100Å) of SiO were deposited at room temperature in a RF glow discharge in a nitrous oxige – silane ambient. Surface properties of the deposit were studied using quantitative and qualitative XPS and AES. Abrupt changes in the energy difference between the O 1s and Si 2p photoelectron peaks, the O/Si stoichiometric ratio, and nitrogen incorporation are observed with varying amounts of silane in the gas ambient (for a fixed nitrous oxide flow). The abrupt change in binding energy difference correlates with the presence of free oxygen in the glow discharge as measured by in-situ mass spectrometry. At silane flows below the abrupt change, nitrogen is excluded from the deposit and the surfaces appear to be chemically silicon dioxide with a O/Si ratio of 2.1 as determined from quantitative XPS analysis. Above the abrupt change, the films exhibit a surface composition of less than 2.0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kaganowicz, G., Ban, V. S. and Robinson, J. W., ”Spatial Effects in Plasma Deposition of SiOx using Magnetically Enhanced Glow DischargeProc. 6th Int. Symp. on Plasma Chemistry, Montreal, Canada, 1983.Google Scholar
2. Kaganowicz, G., Ban, V. S., and Robinson, J. W., J. Vac. Sci. Technol. A 2, xxx(1984), in print.Google Scholar
3. Briggs, D. and Seab, M. P., Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (J. Wiley and Sons, Ltd. Chichester, 1983).Google Scholar
4. Briggs, D. in Electron Spectroscopy: Theory, Techniques and Applications 3 edited by Brundle, C. R. and Baker, A. D. (Academic Press, London, 1979).Google Scholar
5. Hofmann, S. and Sanz, J., Mikrochim. Acta. 10, 135(1983).Google Scholar
6. Kim, K. S., Baitinger, W. E., Amy, J. W. and Winograd, N., J. Electron Spectrosc. 5, 351 (1974).Google Scholar
7. Thomas, J. H. III and Goodman, A. M., J. Electrochem. Soc. 126, 1766 (1979).Google Scholar
8. Thomas, J. H. III and Hofmann, S., ”An X-Ray Photoelectron Spectroscopy (XPS) Study of Ion Bombardment Modification of Silicon Dioxide Surface Stoichiometry” to be published in Surface and Interface Analysis.Google Scholar
9. Hofmann, S. and Thomas, J. H. III, J. Vac. Sci. Technol. B 1, 43 (1983).Google Scholar
10. 83.8 eV is >0.2 eV below the accepted value of the Au 4f7/2 binding energy (see ref. 3). Our value is consistent with Cu 2p3/2 at 932.4 eV and Pd VB at 0.0 eV. The error is due to power supply nonl fearities.0.2+eV+below+the+accepted+value+of+the+Au+4f7/2+binding+energy+(see+ref.+3).+Our+value+is+consistent+with+Cu+2p3/2+at+932.4+eV+and+Pd+VB+at+0.0+eV.+The+error+is+due+to+power+supply+nonl+fearities.>Google Scholar
11. Shirley, D. A., Phys. Rev. B 5, 4709 (1972).Google Scholar
12. Leonhardt, G. and Bilz, H. J., Kristall. und Technik. 10, K35 (1975).Google Scholar
13. Thomas, J. H. III and Hoffmann, D. M., unpublished results (1984).Google Scholar
14. Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H. and Gale, L. H., Surf. Int. Anal. 3, 211 (1981).Google Scholar
15. Betz, G. and Wehner, G. K. in Sputtering by Particle Bombardment II edited by Behrisch, R. (Springer-Verlag, Berlin, 1983) Chapter 2.Google Scholar
16. Lee, R. N., J. Electron Spectrosc. 28, 195 (1982).Google Scholar
17. Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F. and Maserjian, J., J. Vac. Sci. Technol. 16, 1443 (1979).Google Scholar
18. Gorlich, E., Haber, J., Stoch, A. and Stoch, J., J. Sol. State Chem. 33, 121 (1980).Google Scholar
19. Hickmott, T. W. and Baglin, J. E., J. Appl. Phys. 50, 317 (1979).Google Scholar
20. Karcher, R., Ley, L., and Johnson, R. L., Phys. Rev. B. Cond. Mat. 30, 1896 (1984).Google Scholar