Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:02:46.986Z Has data issue: false hasContentIssue false

X-ray Microscopy of Polymeric Materials

Published online by Cambridge University Press:  15 February 2011

H. Adel
Affiliation:
Dept. of Physics, North Carolina State University, Raleigh, NC 27695–8202
B. Hsiao
Affiliation:
Experimental Station, DuPont, Wilmington, DE 19880–0302
G. Mitchell
Affiliation:
Analytical Science Laboratory, Dow Chemical, Midland, MI 48667
E. Rightor
Affiliation:
Texas Polymer Center, B-1470, Dow Chemical, Freeport, TX 77541
A. P. Smith
Affiliation:
Dept. of Physics, North Carolina State University, Raleigh, NC 27695–8202
R. Cieslinski
Affiliation:
Experimental Station, DuPont, Wilmington, DE 19880–0302
Get access

Abstract

We describe how the scanning transmission x-ray microscope at Brookhaven National Laboratory can be used to investigate the bulk characteristics of polymeric materials with chemical sensitivity at a spatial resolution of about 50 nm. We present examples ranging from unoriented multiphase polymers to highly oriented Kevlar fibers. In the case of oriented samples, a dichroism technique is used to determine the orientation of specific chemical bonds. Extension of the technique to investigate surfaces of thick samples is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review of the established methods and developments over the last decade, see X-ray Microscopy, Schmahl, G. and Rudolf, D., eds. (Springer, Berlin, 1984), X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds. (Springer, Berlin, 1988), and X-ray Microscopy III, A. Michette, G. Morrison, and C. Buckley, eds. (Springer, Berlin 1992).Google Scholar
2. Kirz, J., Burge, R., and Rarback, H., Ann. NY. Acad. Sci 342, 135147 (1980), J. Kirz, H. Ade, M. Howells, C. Jacosen, K. H. Ko, S. Lindaas, I. Macnulty, D. Sayre, S. Williams, and X. Zhang, Rev. Sci. Instrum. 63, 557–563 (1992).Google Scholar
3. Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J., and Williams, S., Science 258, 972 (1992).Google Scholar
4. Ade, H., Smith, A. P., Cameron, S., Cieslinski, R., Hsiao, B., Mitchell, G., Rightor, E. (to be printed in Polymer, 36, (1995)).Google Scholar
5. see, for example, Stöhr, J., NEXAFS Spectroscopy (Springer, Berlin, 1992) and references therein. F. Sette, J. Stöhr, and A. P. Hitchcock, J. Chem. Phys. 81, 4906 (1984), D. A. Outka et al., Phys. Rev. Lett. 59, 1321 (1987), C. Tourillon at al., Surface Science 201, 171 (1988).Google Scholar
6. See, for example, Transmission Electron Energy Loss Spectrometry in Materials Science, Disko, M. M., Ahn, C. C., and Fultz, B., eds. (TMS, Warrendale, PA, 1992).Google Scholar
7. Rarback, H. et al., J. X-ray Sci. Technol. 2, 274 (1992).Google Scholar
8. Anderson, E. and Kern, D., in X-ray Microscopy III, eds. Michette, A., Morrison, G., and Buckley, C., eds. (Springer, Berlin 1992).Google Scholar
9. Jacobsen, C., Williams, S., Anderson, E., Brown, M. T., Buckley, C. J., Kern, D., Kirz, J., Rivers, M., and Zhang, X., Optics Comm. 86, 351 (1991).Google Scholar
10. Zhang, X., Jacobsen, C., and Williams, S., Proc. SPIE, 1741, 251259 (1992).Google Scholar
11. The absolute energy calibration is not known to better than about 0.5 eV for these data. Energies quoted to a “precision” better than 0.5 eV are therefore only relevant in the context of energy differences within the short time of the same experiment and sample. Since NEXAFS imaging and micro-spectroscopy are new operating modes of the XI-STXM, in the beginning we did not have the necessary procedures in place to easily calibrate the monochromator with sufficient energy resolution. In addition, during acquisition of the spectra of Figs. 2 and 4, the X 1A monochromator did not have a linear energy scale.Google Scholar
12. for previous EELS work of PET and molecular analoques see Hitchcock, A. P. and Urquhart, S. G. and Rightor, E. G., J. Phys. Chem. 96, 8736 (1992). and E. Rightor et al., Microbeam Analysis 2, S264 (1993). A PET NEXAFS spectrum without spatial resolution is also presented in the latter reference.Google Scholar
13. Armisted, J., Wilkes, G., and Turner, R., J. Appl. Pol. Sci., 35, 601 (1988). D. Okamoto, E. O'Connelki, S. Cooper, T. Root and references therein, J. Polym. Sci., 31, 1163 (1993).Google Scholar
14. Urquhart, S. G., Hitchcock, A. P., Leapman, R. D., Priester, R. D., and Rightor, E. G. (submitted to J. Polym. Sci. B: Polymer Physics).Google Scholar
15. Urquhart, S. G., Hitchcock, A. P., Priester, R. D., and Rightor, E. G. (submitted to J. Polym. Sci. B: Polymer Physics).Google Scholar
16. Ade, H. and Hsiao, B., Science 262, 14271429 (1993).Google Scholar
17. Yang, H. H., Aromatic High Strength Fibers (Wiley-Interscience Pub., New York, 1989).Google Scholar
18. Zhang, X. (private communication).Google Scholar
19. Buckley, C. J., Foster, G. F., Burge, R. E., Ali, S. Y., Scotchford, C. A., Kirz, J., and Rivers, M. L., Rev. Sci. Instrum. 63, 588590, (1992).Google Scholar
20. Cody, G. (private communication).Google Scholar
21. Tonner, B. and Harp, G., Rev. Sci. Instr. 59, 853 (1988), G. R. Harp, Z. L. Han, and B.P. Tonner, J.Vac.Sci. Technol. A 8, 2566 (1990), J. Stohr, Y. Wu, B. D. Hermsmeier, M. B. Samant, G. R. Harp, S. Koranda, D. Dunham, B. P. Tonner, Science 259, 658 (1993).Google Scholar
22. Ade, H., Kirz, J., Hulbert, S., Johnson, E., Anderson, E., and Kern, D., Appl. Phys. Lett. 56, 18411843 (1990), H. Ade, Nucl. Instr. Method. in Phys. Res. A 319, 311–319 (1992).Google Scholar