Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:34:39.824Z Has data issue: false hasContentIssue false

X-Ray Microbeam Studies of Electromigration

Published online by Cambridge University Press:  10 February 2011

G. S. Cargill III
Affiliation:
Lehigh University, Bethlehem, PA 18015, [email protected]
A. C. Ho
Affiliation:
Lehigh University, Bethlehem, PA 18015, [email protected]
K. J. Hwang
Affiliation:
Lehigh University, Bethlehem, PA 18015, [email protected]
H. K. Kao
Affiliation:
Lehigh University, Bethlehem, PA 18015, [email protected]
P.-C. Wang
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
C.-K. Hu
Affiliation:
IBM Research, Yorktown Heights, NY 10598
Get access

Abstract

The interplay between stress and electromigration has been recognized since I. A. Blech et al. used x-ray topography in 1976 to demonstrate that stress gradients developed during electromigration. Availability of high brightness synchrotron x-ray sources, high stability energy dispersive detectors, high resolution area detectors, and pinholes, capillaries and other optical elements for forming x-ray microbeams, has made possible more quantitative, real time measurements of strains and composition changes which develop in polycrystalline metal conductor lines during electromigration. This paper describes advances made in this area, implications of results which have been obtained, and prospects for further progress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Blech, I. A. and Herring, C., Appl. Phys. Lett. 29, 131 (1976).Google Scholar
[2] Blech, I. A. and Tai, K. L., Appl. Phys. Lett. 30, 387 (1977).Google Scholar
[3] Hemmert, R. S. and Costa, M., IEEE Int. Reliability Phys. Symp. Proc. (IEEE, New York, 1991), p. 64.Google Scholar
[4] Ma, Q., Chiras, S., Clarke, D. R.. and Suo, Z., J. Appl. Phys. 78, 1614 (1995).Google Scholar
[5] Yamamoto, N., Rev. Sci. Instrum. 67, 3051 (1996).Google Scholar
[6] York, B. R., Pfizenmayer, H. L., Lee, C. H. and Carnes, R. O., MRS Symp. Proc. 428, 557 (1996).Google Scholar
[7] P.-C Wang, III, G. S. Cargill, Noyan, I. C., Liniger, E. G, Hu, C.-K.. and Lee, K. Y., MRS Symp. Proc. 427, 35 (1996).Google Scholar
[8] Wang, P.-C., III, G. S.Cargill, 1. Noyan, C., Liniger, E. G., Hu, C.-K.. and Lee, K. Y., MRS Symp. Proc. 473, 273 (1997).Google Scholar
[9] Wang, P.-C., III, G. S. Cargill, Noyan, I. C.. and Hu, C.-K., Appl. Phys. Lett. 72, 1296 (1998).Google Scholar
[10] Wang, P.-C., Thermal and Electromigration Stress Distributions Measured by X-ray Microdiffraction, thesis, D.E.S., Columbia University, 1997.Google Scholar
[11] Wang, P.-C., III, G. S. Cargill. and Noyan, I. C., MRS Symp. Proc. 375, 247 (1995).Google Scholar
[12] Wang, P -C., III, G. S. Cargill, Noyan, I. C.. and Liniger, E. G., MRS Proc. 403, 213 (1996).Google Scholar
[13] Korhonen, M. A., Black, R. D.. and Li, C.-Y., J. Appl Phys. 69 1748 (1991).Google Scholar
[14] Sauter, A. I. and Nix, W. D., IEEE Trans. Components Hybrids Manuf Technol. 15, 594 (1992).Google Scholar
[15] Blech, I. A., J. Appl. Phys. 47, 1203 (1976).Google Scholar
[16] Korhonen, M. A., Børgesen, P., Tu, K. N.. and Li, C.-Y., J. Appl. Phys. 73, 3790 (1993).Google Scholar
[17] Warwick, T., Anders, S., Hussain, Z., Lamble, G. M, Lorusso, G. F., MacDowell, A. A, Martin, M. C., McHugo, S. A., McKinney, W. R.. and Padmore, H. A., Synchrotron Radiation News 11, 5 (1998).Google Scholar
[18] Tamura, M., Chung, J. S., Ice, G. E., Larson, B. C., Yoon, J. D., Tischler, J. Z., Williams, E. L.. and Low, W. P., “X-ray Microbeam Measurement in Al Interconnects,” paper M4.7, this symposium.Google Scholar
[19] Hwang, K. J., III, G. S. Cargill, Wang, P. C.. and Marieb, T, “In-situ X-ray Microdiffraction Strain Measurements from Single Grains in Passivated Aluminum Conductor Lines,” paper M4.8, this symposium.Google Scholar
[20] Kao, H. K., III, G. S. Cargill, Hwang, K. J., Ho, A. C., Wang, P. C.. and Hu, C. K., “In-situ Xray Microbeam Cu Fluorescence and Strain Measurements on Al(0.5 at.% Cu) Conductor Lines During Electromigration,” paper M4.6, this symposium.Google Scholar