Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T08:41:32.703Z Has data issue: false hasContentIssue false

X-Ray Microbeam Quantification of Grain Subdivision Accompanying Large Deformations of Copper

Published online by Cambridge University Press:  10 February 2011

G. C. Butler
Affiliation:
George W. Woodruff School of Mechanical Engineering
A. Guvenilir
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
D. L. McDowell
Affiliation:
Mechanical Properties Research Laboratory George W. Woodruff School of Mechanical Engineering School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
S. R. Stock
Affiliation:
Mechanical Properties Research Laboratory School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Get access

Abstract

Polychromatic synchrotron x-ray microbeams offer a very efficient alternative to electron beam methods for quantifying the amount and character of grain subdivision accompanying large deformations. With a 0.01 mm diameter collimator, bending magnet radiation from a 3.0 GeV source and image storage plates, samples of copper with thicknesses greater than 0.1 mm have been studied. Results from an as-received sample and a sample deformed to 100% torsion are compared and illustrate how efficiently grain subdivision can be quantified with polychromatic microbeam diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haase, J. D., Guvenilir, A., Witt, J. R. and Stock, S. R., Adv X-Ray Anal 41 (1998) in press.Google Scholar
2. Hansen, N. and Jensen, D. Juul, Acta Mater 40 (1992) 3265.Google Scholar
3. Taylor, G. I., J Inst Metals 62 (1938) 307.Google Scholar
4. Taylor, G. I., in Steven Timoshenko 60t” Anniv. Vol., Ed. Lessels, J. M., 1938, p. 218 .Google Scholar
5. Asaro, R. J. and Needleman, A., Acta Metall 33 (1985) 923.Google Scholar
6. Mathur, K. K. and Dawson, P. R., Int J Plasticity 5 (1989) 67.Google Scholar
7. Kalidindi, S. R. and Anand, L, in Adv. In Finite Deformation Prob. In Mater. Processing Structures, AMD 125 Chandra, N., Reedy, J. N., eds, ASME, 1991, p. 3 Google Scholar
8. Hansen, N. and Kuhlman-Wilsdorf, D., Mater Sci Eng 81 (1986) pp. 141161.Google Scholar
9. Stout, M. G., Kallend, J. S., Kocks, U. F., Przystupa, M. A. and Rollet, A. D., in Proc. 8th Conf. On Textures of Mater. (ICOTOM 8), eds Kallend, J. S. and Gottstein, G., TMS, 1988, p. 479.Google Scholar
10. Hughes, D. A and Hansen, N., Acta Mater 45 (1997) 3871.Google Scholar
11. Wever, F., Z Phys 28 (1924) 69.Google Scholar
12. Cullity, B. D., Elements of X-ray Diffraction, Second Ed. Addison-Wesly, 1978.Google Scholar
13. Barrett, C. S. and Massalski, T. B., Structure of Metals, Third Ed., Pergamon, 1986.Google Scholar
14. Dingley, D. J., Scanning Electron Microscopy 2 (1984) 569.Google Scholar
15. Randall, V., Microtexture Determination and its Applications. Inst. Metals, 1992.Google Scholar
16. Adams, B. L., Wright, S. I. and Kunze, K., Met Trans. 24A (1993) 819.Google Scholar
17. Matsumoto, K., Shibayanagi, T. and Umakoshi, Y., Acta Mater 45 (1997) 439 Google Scholar
18. Hughes, D. A., Liu, Q., Chrzan, D. C. and Hansen, N., Acta Mater 45 (1997) 105 Google Scholar
19. Stock, S., Ice, G. E., Habenschuss, A. and Sparks, C. J. Jr., National Synchrotron Light Source Annual Report 1986, BNL 52045, p 354.Google Scholar
20. Rebonato, R., Ice, G. E., Habenschuss, A., and Billelo, J. C., Phil Mag A60 (1989) 571.Google Scholar
21. Ice, G. E., Summarizing [19 and 20] in Nucl Instrum Meth B24-25 pt. 1 (1987) 397.Google Scholar
22. Haase, J. D., Guvenilir, A., Witt, J. R. and Stock, S. R, Acta Mater in press (1998).Google Scholar
23. Wang, P. C., Cargill, G. S., III, and Noyan, I.C., Mat Res Soc Proc 375 (1995) 247.Google Scholar
24. Poulsen, H. F., Garbe, S., Lorentzen, T., Jensen, D. Juul, Poulsen, F. W., Andersen, N. H., Frello, T., Feidenhans'l, R. and Graafsma, H., J Synch Rad 4 (1997) 147.Google Scholar
25. Graham, S. Jr., ”The Stress State Dependence of Finite Inelastic Deformation Behavior of F.C.C. Polycrystalline Materials,” M.S. Thesis, Georgia Inst. Technology, 1995.Google Scholar
26. Lindholm, U. S., Nagy, A., Johnson, G. R. and Hoegfeldt, J. M., ASME J Eng Mater Tech 102 (1980) 376.Google Scholar
27. Bulter, G. C, Graham, S., McDowell, D. L., Stock, S. R. and Ferney, V. C., ASME J Eng Mater Tech in press (1998).Google Scholar
28. Stock, S. R., Langoy, M. A. and Morano, R., unpublished data, December 1997.Google Scholar
29. Ameniya, Y., Matsushita, T., Nakagawa, A., Satow, Y, Miyahora, J., and Chikawa, J., Nucl Instrum Meth. A266 (1988) 645.Google Scholar
30. Whiting, B. R., Owen, J. F. and Rubin, B. R. Nucl Instrum Meth A266 (1988) 628.Google Scholar
31. Stock, S. R., Rek, Z. U., Chung, Y. H., Huang, P. C., and Ditchek, B. M., J Appl Phy 73 (1993) 1.Google Scholar