Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T03:56:58.919Z Has data issue: false hasContentIssue false

X-Ray Investigation of Strain Relaxation in Short-Period SimGen Superlattices using Reciprocal Space Mapping

Published online by Cambridge University Press:  25 February 2011

P. Hamberger
Affiliation:
Johannes Kepler University, Institut fir Halbleiterphysik, A-4040 Linz, Austria
E. Koppensteiner
Affiliation:
Johannes Kepler University, Institut fir Halbleiterphysik, A-4040 Linz, Austria
G. Bauer
Affiliation:
Johannes Kepler University, Institut fir Halbleiterphysik, A-4040 Linz, Austria
H. Kibbel
Affiliation:
Daimler Benz AG, Forschungszentrum, D-7900 Ulm, Germany
H. Presting
Affiliation:
Daimler Benz AG, Forschungszentrum, D-7900 Ulm, Germany
E. Kasper
Affiliation:
Daimler Benz AG, Forschungszentrum, D-7900 Ulm, Germany
A. Pesek
Affiliation:
Johannes Kepler University, Forschungsinstitut fir Optoelektronik, A-4040 Linz, Austria
Get access

Abstract

The optoelectronic properties of SimGen strained layer superlattices (SLS's) depend strongly on the structural perfection. We used double crystal and triple axis x-ray diffractometry to characterize the structural properties of short period Si9Ge6 SLS's grown on about lμm thick step-graded SiGe alloy buffers. As grown SLS's and samples annealed subsequently at 550°C, 650°C and 780°C for 60 mmn were investigated. Precise strain data were extracted from two-dimensional reciprocal space maps around (004) and (224) reciprocal lattice points. These data were used as refined input parameters for the dynamical simulation of the integrated intensity along the qll[004] direction. Annealing causes interdiffusion as indicated by the decreasing superlattice (SL)-satellite peak intensities and by the change of the Si/Ge thickness ratio. However, the full width at half maximum of the SL satellite peaks does not change significantly with annealing up to 650°C. The in-plane SL lattice constant in both samples is increased only slighty by annealing (< 9×10−3 Å). Consequently the interface intermixing due to interdiffusion is the main cause for the shift of the luminescence energy to higher values in these annealed samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a recent review see e.g.:Presting, W., Kibbel, A., Jaros, M., Turton, R.M., Menczigar, U., Abstreiter, G., and Grimmeiss, H.G., Semicond.Sci.Technol. 7, 1127 (1992).Google Scholar
2. Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J., and Weir, B.E., Appl.Phys.Lett. 59, 811 (1991).CrossRefGoogle Scholar
3. Menczigar, U., Abstreiter, G., Olajos, J., Engvall, J., Gimmeiss, H., Kibbel, H., Kasper, E., and Presting, H., Phys.Rev.B (1993), in printGoogle Scholar
4. Chang, S.J. and Wang, K.L., Appl.Phys.Lett. 54(13) 1253 (1989).Google Scholar
5. Baribeau, J.M., Pascual, R., and Saimoto, S., Appl.Phys.Lett. 57(15) 1502 (1990).Google Scholar
6. Houghton, D.C., Perovic, D.D., Baribeau, J.M., and Weatherly, G., J.Appl.Phys. 67,1850 (1990).Google Scholar
7. LeGoues, F.K., Ott, J.A., Eberl, K., and Iyer, S.S., Appl.Phys.Lett. 61, 174 (1992).Google Scholar
8. Koschinski, W., Dettmer, K., and Kessler, F.R., J.Appl.Phys. 72, 471 (1992).Google Scholar
9. Wang, P.J., Goorsky, M.S., Meyerson, B.S., and LeGoues, F., Appl.Phys.Lett. 59, 814(1991).Google Scholar
10. Fewster, P.F., J.Appl.Cryst. 22, 64 (1989); 24, 178 (1991).Google Scholar
11. Schffler, F., Többen, D., Herzog, H.J., Abstreiter, G., and Hollainder, B., Semicond.Sci. Technol. 7, 260 (1992).Google Scholar
12. Koppensteiner, E., Springholz, G., Hamberger, P., and Bauer, G., J.Appl.Phys. submittedGoogle Scholar
13. Holy, V., Kubena, J., Abramof, E., Lischka, K., Pesek, A. and Koppensteiner, E., J.Phys.D (1993), in print.Google Scholar
14. Holy, V., Kubena, J. and Ploog, K., phys.stat.sol.(b) 162, 347 (1990).Google Scholar
15. Bartels, W.J., J.Vac.Sci.Technol. B1 (2), 338 (1983).Google Scholar
16. Koppensteiner, E., Hamberger, P., Bauer, G., Pesek, A., Kibbel, H., Presting, H., and Kasper, E., Appl.Phys.Lett., 62 (15) 1 (1993).CrossRefGoogle Scholar
17. Iyer, S.S. and LeGoues, F.K., J.Appl.Phys. 65 (12) 4693 (1989).Google Scholar
18. Menczigar, U., Abstreiter, G., private communication.Google Scholar
19. Schorer, R., Friess, E., Eberl, K. and Abstreiter, G., Phys.Rev.B 44 1772 (1991).Google Scholar
20. McVay, G.L. and DuCharme, A.R. Phys.Rev.B 9, 627 (1974).Google Scholar
21. Headrick, R.L., Baribeau, J.-M., Lockwood, D.J., Jackman, T.E., Bedzyk, M.J., Appl.Phys.Lett. 62, 687 (1993).Google Scholar