No CrossRef data available.
Article contents
X-Ray Investigation of Strain Relaxation in Short-Period SimGen Superlattices using Reciprocal Space Mapping
Published online by Cambridge University Press: 25 February 2011
Abstract
The optoelectronic properties of SimGen strained layer superlattices (SLS's) depend strongly on the structural perfection. We used double crystal and triple axis x-ray diffractometry to characterize the structural properties of short period Si9Ge6 SLS's grown on about lμm thick step-graded SiGe alloy buffers. As grown SLS's and samples annealed subsequently at 550°C, 650°C and 780°C for 60 mmn were investigated. Precise strain data were extracted from two-dimensional reciprocal space maps around (004) and (224) reciprocal lattice points. These data were used as refined input parameters for the dynamical simulation of the integrated intensity along the qll[004] direction. Annealing causes interdiffusion as indicated by the decreasing superlattice (SL)-satellite peak intensities and by the change of the Si/Ge thickness ratio. However, the full width at half maximum of the SL satellite peaks does not change significantly with annealing up to 650°C. The in-plane SL lattice constant in both samples is increased only slighty by annealing (< 9×10−3 Å). Consequently the interface intermixing due to interdiffusion is the main cause for the shift of the luminescence energy to higher values in these annealed samples.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993