Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:58:11.816Z Has data issue: false hasContentIssue false

X-RAY Double Crystal Analysis of Structure and Stress Relaxation in Solid Phase Epitaxial CaF2 and Ge/CaF2 Films on (111) Si by in Situ Rapid Isothermal Processing

Published online by Cambridge University Press:  25 February 2011

J. Chaudhuri
Affiliation:
Mechanical Engineering Dept., Wichita State University, Wichita, KS 67208
F. Hashmi
Affiliation:
Mechanical Engineering Dept., Wichita State University, Wichita, KS 67208
R. Singh
Affiliation:
Dept. of Elect. and Computer Eng., Clemson Univ., Clemson, SC 29634
R. P. S. Thakur
Affiliation:
School of Elect. Eng. and Computer Sc., Univ. of Oklahoma, Norman, OK 73019
Get access

Abstract

Planar strain in CaF2 and Ge/CaF2 films grown on (111) Si substrate has been measured by an x-ray double crystal diffraction technique using rocking curves. The films grown by a solid phase epitaxial approach using in situ rapid isothermal processing are found to have small tensile planar strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brauman, J. C., Nix, D., Barnett, M. and Smith, S., eds., Thin Films: Stresses and Mechanical Properties, Mat. Res. Soc. Symp. Proc. Vol. 130, pp. 1393.Google Scholar
2. Cammarata, R. C. and Sieradzki, K., Appl. Phys. Lett. 55, 1197 (1989).CrossRefGoogle Scholar
3. Gat, A, Gerzbert, L., Gibbons, L, Magee, J. F., Pong, T. J. and Hong, J. B., Appl. Phys. Letters 33, 8 (1978).Google Scholar
4. Fan, J. C., Tsaur, B. Y. and Geif, M. W., J. Cryst. Growth 63, 453 (1983).Google Scholar
5. Bomchil, G., Henno, R., Bala, K., eds., Eng. Beam Solid Interaction and Transient Thermal Processing, Strasbourg (Edition De. Physique, 1985), pp. 453474.Google Scholar
6. Tsutsui, K, Nakazawa, T., Asano, T., Ishiwara, H. and Furukawa, F., IEEE Electron Device Letters EDL-8 (6), 277(1987).Google Scholar
7. Singh, R., Kumar, A., Thakur, R. P. S., Chou, P., Chaudhuri, J., Gondhalekar, V. and Narayan, J., Appl. Phys. Lett. 56, 1567 (1990).Google Scholar
8. Associates, A. G., Sunnyvale, CA 96358.Google Scholar
9. Warren, B. E., Prog. Metal Phys. 8, 147 (1959).Google Scholar
10. Mathews, J. W., Mader, S. and Light, T. B., J. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
11. Timoshenko, S., J. Opt. Soc. Am. 11, 233 (1925).Google Scholar
12. Fatemi, M., J. Cryst. Growth 96, 316 (1989).Google Scholar
13. Honstra, J. and Bartels, W. J., J. Crystal Growth 44, 513 (1978).Google Scholar
14. Huntington, H. B., The Elastic Constants of Crystals, (Academic Press New York, 1958), p62.Google Scholar