Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T09:30:36.130Z Has data issue: false hasContentIssue false

X-Ray Diffraction Studies of Protein Monolayers Bound to Self-Assembled Monolayers

Published online by Cambridge University Press:  21 February 2011

S. M. Amador
Affiliation:
Department of Chemistry, Philadelphia PA 19104
J. M. Pachence
Affiliation:
Department of Chemistry, Philadelphia PA 19104
R. Fischetti
Affiliation:
Department of Chemistry, Philadelphia PA 19104
J. P. McCauley Jr.
Affiliation:
Department of Chemistry, Philadelphia PA 19104
A. B. Smith III
Affiliation:
Department of Chemistry, Philadelphia PA 19104
P. L. Dutton
Affiliation:
Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA 19104
J. K. Blasie
Affiliation:
Department of Chemistry, Philadelphia PA 19104
Get access

Abstract

X-ray interferometry was used to study monolayers of the protein yeast cytochrome c and a bimolecular cytochrome c/photosynthetic reaction center complex bound to self-assembled monolayers of 11-trichlorosilylundecyl thiol on inorganic substrates. Optical absorption spectroscopy and dissociation experiments show that the cytochrome c monolayer is covalently attached to the self-assembled monolayer via a disulfide bond and they are consistent with the cytochrome c and its bimolecular reaction center complex forming a close-packed array on the surface of the solid substrate. By sequentially forming these bio-organic monolayers on synthetic inorganic multilayers (“quantum wells”), we were able to determine the electron density profile of the protein layers to ∼13 Å resolution using x-ray interferometry and refinement techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Louie, G.V., Hutcheon, W.L.B., and Brayer, G.D., J. Mol. Biol. 199, 295 (1988).Google Scholar
[2] For recent reviews see Deisenhofer, J., Michel, H., Science 245, 1463 (1989); G. Feher, J.P. Allen, M.Y. Okamura, D.C. Ross Nature 339, 111 (1989) and references within.Google Scholar
[3] Pachence, J.M. and Blasie, J.K., Biophys. J. 52, 735 (1987).Google Scholar
[4] Pachence, J.M., Fischetti, R.F., and Blasie, J.K., Biophys. J. 56 327 (1989).Google Scholar
[5] Pachence, J.M., Amador, S. M.,Maniara, G., Vanderkooi, J., Dutton, P.L., and Blasie, J.K., preprint.Google Scholar
[6] Tidswell, I.M., Ocko, B. M., Pershan, P.S., Wasserman, S.R., Whitesides, G.M., Axe, J.D., Phys. Rev. B (in press).Google Scholar
[7] Bloch, J.M., Yun, W.B., Mohanty, K.M., Phys. Rev. B 40, 6529 (1989).Google Scholar
[8] Bedzyk, M. J., Bilderback, D. H., Bommarito, G. M., Caffrey, M., Schildkraut, J. S., Science 241, 1788 (1988).Google Scholar
[9] Lesslauer, W. and Blasie, J.K., Acta Cryst. A 27, 456 (1971).Google Scholar
[10] Wasserman, S.R., Biebuyck, H., Whitesides, G.M., J. Mater. Res. 4(4) 886 (1989).Google Scholar
[11] Sagiv, J., JACS 102, 92 (1980); J. Am. Chem. Soc. 102 92.Google Scholar
[12] Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., Margoliash, E., J. Mol. Biol. 246, 1511 (1971).Google Scholar
[13] Heckl, W.M., Losche, M., and Mohwald, H., Thin Solid Films, 133, 7381 (1985).Google Scholar
[14] Stroud, R. M., Agard, D. A., Biophys. J. 25, 495 (1979).Google Scholar