Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T04:22:49.874Z Has data issue: false hasContentIssue false

X-Ray Diffraction as a Probe for Elastic Strain: Micro- and Nanoscale Investigation of Thin Metal Films

Published online by Cambridge University Press:  01 February 2011

R. Spolenak*
Affiliation:
Lab. for Nanometallurgy, Dept. of Materials, ETH Zurich, Switzerland
Get access

Abstract

In the past years the concept of measuring strain by x-rays has changed significantly. The combination of 3rd generation synchrotron sources, advanced focusing techniques and large area detectors has made it possible to probe volumes smaller than a cubic micron. This devolopment has made it possible to probe microstrains directly without having to rely on highly sophisticated models to evaluate peak broadening effects. This paper will provide a review of the state of art of local strain measurements by x-rays, discuss their limitations, provide an outlook of where the field may be going within the next years and address the most important issues to be solved. Examples will be given for the current limits in terms of resolution in time, space, strain and intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Poulsen, H. F., Margulies, L., Schmidt, S., Winther, G., Acta Materialia 51 (2003) 38213830.Google Scholar
[2] Gundlach, C., Pantleon, W., Lauridsen, E. M., Margulies, L., Doherty, R. D., Poulsen, H. F., Scripta Materialia 50 (2004) 477481.Google Scholar
[3] Martins, R. V., Margulies, L., Schmidt, S., Poulsen, H. F., Leffers, T., Materials Science and Engineering a 387–89 (2004) 8488.Google Scholar
[4] Poulsen, H. F., Fu, X., Knudsen, E., Lauridsen, E. M., Margulies, L., Schmidt, S., 3DXRD - Mapping grains and their dynamics in 3 dimensions, in: Recrystallization and Grain Growth, Pts 1 and 2, vol 467–470, 2004, p. 13631372.Google Scholar
[5] Winther, G., Margulies, L., Schmidt, S., Poulsen, H. F., Acta Materialia 52 (2004) 28632872.Google Scholar
[6] Larson, B. C., Yang, W., Ice, G. E., Budai, J. D., Tischler, J. Z., Nature 415 (2002) 887890.Google Scholar
[7] Margulies, L., Winther, G., Poulsen, H. F., Science 291 (2001) 23922394.Google Scholar
[8] Margulies, L., Lorentzen, T., Poulsen, H. F., Leffers, T., Acta Materialia 50 (2002) 17711779.Google Scholar
[9] Schmidt, S., Nielsen, S. F., Gundlach, C., Margulies, L., Huang, X., Jensen, D. J., Science 305 (2004) 229232.Google Scholar
[10] MacDowell, A. A., Celestre, R. S., Tamura, N., Spolenak, R., Valek, B., Brown, W. L., Bravman, J. C., Padmore, H. A., Batterman, B. W., Patel, J. R., Nuclear Instruments & Methods in Physics Research Section a 467 (2001) 936943.Google Scholar
[11] Tamura, N., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Valek, B., Bravman, J. C., Spolenak, R., Brown, W. L., Marieb, T., Fujimoto, H., Batterman, B. W., Patel, J. R., Applied Physics Letters 80 (2002) 37243726.Google Scholar
[12] Tamura, N., MacDowell, A. A., Spolenak, R., Valek, B. C., Bravman, J. C., Brown, W. L., Celestre, R. S., Padmore, H. A., Batterman, B. W., Patel, J. R., Journal of Synchrotron Radiation 10 (2003) 137143.Google Scholar
[13] Barabash, R. I., Ice, G. E., Tamura, N., Valek, B. C., Bravman, J. C., Spolenak, R., Patel, J., MPMD Fifth Global Innovations Proceedings. Surfaces and Interfaces in Nanostructured Materials & Trends in LIGA, Miniaturization, and Nanoscale Materials (2004) 371–371.Google Scholar
[14] Barabash, R. I., Ice, G. E., Tamura, N., Valek, B. C., Bravman, J. C., Spolenak, R., Patel, J. R., Journal of Applied Physics 93 (2003) 57015706.Google Scholar
[15] Mittemeijer, E. J., Scardi, P., Diffraction Analysis of the Microstructure of Materials, Springer-Verlag, Berlin Heidelberg, 2004 Google Scholar
[16] Spolenak, R., Brown, W. L., Tamura, N., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Valek, B., Bravman, J. C., Marieb, T., Fujimoto, H., Batterman, B. W., Patel, J. R., Physical Review Letters 90 (2003).Google Scholar
[17] Phillips, M. A., Spolenak, R., Tamura, N., Brown, W. L., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Batterman, B. W., Arzt, E., Patel, J. R., Microelectronic Engineering 75 (2004) 117126.Google Scholar
[18] Larsen, A. W., Gundlach, C., Poulsen, H. F., Margulies, L., Xing, Q., Jensen, D. J., In-situ investigation of bulk nucleation by X-ray diffraction, in: Recrystallization and Grain Growth, Pts 1 and 2, vol 467–470, 2004, p. 8186.Google Scholar
[19] Budai, J. D., Yang, M., Larson, B. C., Tischler, J. Z., Liu, W., Weiland, H., Ice, G. E., Three-dimensional micron-resolution X-ray Laue diffraction measurement of thermal grain-evolution in aluminum, in: Recrystallization and Grain Growth, Pts 1 and 2, vol 467–470, 2004, p. 13731378.Google Scholar
[20] Kramer, S., Mayer, J., Witt, C., Weickenmeier, A., Ruhle, M., Ultramicroscopy 81 (2000) 245262.Google Scholar
[21] Keller, R. R., Roshko, A., Geiss, R. H., Bertness, K. A., Quinn, T. P., Microelectronic Engineering 75 (2004) 96102.Google Scholar
[22] Ma, Q., Chiras, S., Clarke, D. R., Suo, Z., Journal of Applied Physics 78 (1995) 16141622.Google Scholar