Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:23:55.419Z Has data issue: false hasContentIssue false

X-Ray Diffraction and Reflectivity Studies of Thin Porous Silicon Layers

Published online by Cambridge University Press:  15 February 2011

D. Buttard
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, CNRS (UMR 5588) B.P 87, 38402 Saint-Martin-d'Hères Cedex - FRANCE, [email protected]
G. Dolino
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, CNRS (UMR 5588) B.P 87, 38402 Saint-Martin-d'Hères Cedex - FRANCE, [email protected]
D. Bellet
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, CNRS (UMR 5588) B.P 87, 38402 Saint-Martin-d'Hères Cedex - FRANCE, [email protected]
T. Baumbach
Affiliation:
Fraunhofer Institut, Zerstörungsfreie Prüfverfahren, Dresden -, GERMANY.
Get access

Abstract

High resolution X-ray diffraction and reflectivity have been used for the structural characterization of thin porous silicon layers of p and p+ doping type. Thin porous silicon layers studied either by diffraction or reflectivity, in the range of 10–1000 nm, exhibit several thickness fringes, corresponding to a lateral homogeneity of the layer thickness. The comparison between the experimental results with simulations enables one to deduce structural information relative to the porosity, thickness, lattice parameter as well as interface thickness. For p+ type samples a double fringe system was observed, showing the existence of a surface film probably at the porous silicon layer top surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Eur. Mat. Res. Soc. Symp. Proc. Thin Solid Film vol. 276 (1996); Mat. Res. Soc. Proc. Symp. vol. 358 (1995).Google Scholar
3.Bellet, D. and Dolino, G., Thin Solid Films 276, 1 (1996).Google Scholar
4.Buttard, D., Bellet, D. and Dolino, G., J. Appl. Phys. 79, 8060 (1996).Google Scholar
5.Dolino, G., Bellet, D. and Faivre, C., Phys. Rev. B (December 1996), to be published.Google Scholar
6.Lomov, A.A., Bellet, D. and Dolino, G., Phys. Stat. Sol. (b) 190, 219 (1995).Google Scholar
7.Buttard, D., Bellet, D. and Baumbach, T., Thin Solid Films 276, 69 (1996).Google Scholar
8.Loni, A., Canham, L.T., Berger, M.G., Arens-Fisher, R., Munder, H., Luth, H., Arrand, H.F., Benson, T.M., Thin Solid Films 276, 143 (1996).Google Scholar
9.Baumbach, T., Brühl, H.-G., Rhan, H. and Pietsch, U., J. Appl. Crystallogr. 21, 386 (1988).Google Scholar
10.Schalchli, A., Benattar, J.J. and Licoppe, C., Eur. Phys. Lett. 26, 271 (1994).Google Scholar
11.Chason, E., Guilinger, T.R., Kelly, M.J., Headley, T.J. and Howard, A.J., Mat. Res. Soc. Symp. Proc. 358, 321 (1995).Google Scholar
12.Unagami, T., J. Electrochem. Soc. 127, 476 (1980).Google Scholar