Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:22:33.109Z Has data issue: false hasContentIssue false

X-Ray Absorption Studies of Uranium Sorption on Mineral Substrates

Published online by Cambridge University Press:  15 February 2011

Eric A. Hudson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Louis J. Terminello
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Brian E. Viani
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Tobias Reich
Affiliation:
Forschungszentrum Rossendorf e. V., Institut ffir Radiochemie, Postfach 51 05 19, D-01314 Dresden, Germany
Jerome J. Bucher
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
David K. Shuh
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
Norman M. Edelstein
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Uranium L3-edge x-ray absorption spectra have been measured for uranium-mineral sorption systems. An expansible layer silicate, vermiculite, was treated to obtain a collapsed phase, thereby limiting access to the interior cation exchange sites. Samples were prepared by exposing the finely powdered mineral, in the natural and modified form, to aqueous solutions of uranyl chloride. EXAFS spectra of the encapsulated samples were measured at the Stanford Synchrotron Radiation Laboratory. Results indicate that the uranyl ion possesses a more symmetric local structure for the natural vermiculite than for the collapsed form, suggesting structural differences between uranyl species within the interlayer regions of vermiculite and on the external surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brindley, G.W. and Brown, G., Crystal Structures of Clay Minerals and their X-ray Identification (Mineralogical Society, London, 1980), p.204.Google Scholar
2. Chemical Thermodynamics of Uranium, edited by Wanner, H. and Forest, I. (North- Holland, New York, 1992) p. 107 and p. 195.Google Scholar
3. Rehr, J. J., Mustre de Leon, J., Zabinsky, S. I., and Albers, R. C., J. Am. Chem. Soc. 113, 5135 (1991).Google Scholar
4. Taylor, J. C., Acta. Cryst. B 27, 1088 (1971).Google Scholar
5. Charpin, P., Dejean, A., Folcher, G., Rigny, P., and Navaza, P., J. de Chim. Phys. 82 (1985); C. Gtörller-Walrand and W. Colen, Chem. Phys. Lett. 93, 82 (1982).Google Scholar
6. Alcock, N. W. and Esperas, S., J. Chem. Soc. Dalton Tran. 1977, 893.Google Scholar
7. Zachariasen, W. H., Acta Cryst. 7, 795 (1954).Google Scholar
8. Bannister, M. J. and Taylor, J. C., Acta Cryst. B 26, 1775 (1970); J. C. Taylor, Acta Cryst. B 27, 1088 (1971); B. O. Loopstra, J. C. Taylor, and A. B. Waugh, J. Solid State Chem. 20, 9 (1977).Google Scholar
9. Alcover, J. F., Gatineau, L., and Méring, J., Clays and Clay Minerals 21, 131 (1973)Google Scholar
10. Sposito, G., Surface Chemistry of Soils, (Oxford University Press, New York, 1984), p. 15.Google Scholar