Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:36:27.264Z Has data issue: false hasContentIssue false

X-Ray Absorption Spectroscopy of the Rare Earth Orthophosphates

Published online by Cambridge University Press:  15 February 2011

D. K. Shuh
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
L. J. Terminello
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
M. M. Abraham
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d104fn→3d94fn+1 transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO4 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8–2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Behmer, J. C., Starace, A. F., Fano, U. O., Sugar, J., and Cooper, J. W., Phys. Rev. Lett. 25, 1521 (1971).Google Scholar
2. Fuggle, J. C., Hillebrecht, U. O., Estera, J. -M., Karnatak, R. C., Gunnarsson, O., Schönhammer, K., Phys. Rev. B 27, 4637 (1983).CrossRefGoogle Scholar
3. Kaindl, G., Kalkowski, G., Brewer, W. D., Perscheid, B., and Holtzberg, F., J. Appl. Phys. 55,1910 (1984).Google Scholar
4. Thole, B. T., van der Laan, G., Fuggle, J. C., Sawatzky, G. A., Karnatak, R. C., and Estera, J. -M., Phys. Rev. B 32, 5107 (1985).Google Scholar
5. Fuggle, J. C. in Unoccupied Electronic States, edited by Fuggle, J. C. and Inglesfield, J. E., Springer-Verlag, Berlin, (1992).CrossRefGoogle Scholar
6. Limpicki, A., Berman, E., Wojtowicz, A. J., and Balcerzyk, M., IEEE Trans. Nucl. Sci. (in press).Google Scholar
7. Jarosewich, E. and Boatner, L. A., Geostandards Newsletter 15, 397 (1991); L. A. Boatner and R. C. Sales, in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C., (Elsevier Science Publishers, 1988) pp. 495–564.Google Scholar
8. Tirsell, K. G. and Karpenko, V. P., Nucl. Instr. and Meth. A291, 511 (1990).Google Scholar
9. Terminello, L. J., Waddill, G. D., and Tobin, J. G., Nucl. Instr. and Meth. A319, 271 (1992).Google Scholar
10. Cowan, R., J. Opt. Soc. Am. 58, 808 (1968); R. Cowan in The Theory of Atomic Structure and Spectra, (University of California Press, Berkeley, 1981).Google Scholar