Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:04:58.507Z Has data issue: false hasContentIssue false

Xps and Sem Studies on the Corrosion of UO2 Cointaining Plutonium in Demineralized and Carbonated Water.

Published online by Cambridge University Press:  11 February 2011

J. Cobos
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach, 2340, 76125 Karlsruhe, Germany.
T. Wiss
Affiliation:
CIEMAT, Avda Complutense 22, E-28040 Madrid, Spain. [email protected]
T. Gouder
Affiliation:
CIEMAT, Avda Complutense 22, E-28040 Madrid, Spain. [email protected]
V. V. Rondinella
Affiliation:
CIEMAT, Avda Complutense 22, E-28040 Madrid, Spain. [email protected]
Get access

Abstract

An oxidation and dissolution study has been performed on UO2 pellets containing ∼10 and ∼0.1 wt. % 238Pu, ∼10 wt. % 239Pu and on undoped UO2 to investigate the effects of radiolysis and composition on the corrosion behavior of spent fuel. The so-called alpha-doped UO2 is used to simulate the alpha-radiation field of different types of commercial LWR spent fuel after different storage times. Leaching experiments in demineralized and carbonated water at room temperature under oxidizing conditions showed that relatively high amounts of 238Pu were released. The leached surfaces were examined with X-ray Photoemission Spectroscopy (XPS), and the progressive surface oxidation was monitored. The oxidation of the U(IV) during the leaching experiments, in the materials doped with 238Pu resulted in precipitation of U(VI) phases: enhanced formation of studtite for the strongest radiation field and shoepite at low radiation field was observed on the surface of the pellet. Essentially no precipitation of Pu-rich phases was directly observed. Leaching in carbonated water and characterization of UO2 containing 239Pu under the same experimental conditions were performed and the results compared to those for alpha-doped UO2. The chemistry effects due to the presence of Pu in addition to alpha-radiolysis were investigated.

Type
articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Allen, A. O., The radiation chemistry of water and aqueous solutions, Van Nostrand, Princenton, 1961.Google Scholar
[2] Sprinks, J. W., Woods, R. J., An introduction to radiation chemistry 3rd Ed. Wiley Interscience NY 1990.Google Scholar
[3] Christiensen, H. and Bjergbakke, E.. Mat. Rec. Soc. Symp. Proc. Volume 50, 1985.Google Scholar
[4] Sunder, S. Nucl. Tech. 122, (1998) 211.Google Scholar
[5] Christiensen, H. and Bjergbakke, E.. Mat. Rec. Soc. Symp. Proc. Volume 84, 1987.Google Scholar
[6] Christiensen, H., Sunder, S.. J. Nucl. Mater. 238, (1996) 70.Google Scholar
[7] Shoesmith, D. W., Sunder, S.. Journal of Nuclear Materials 190 (1992) 2035.Google Scholar
[8] Cobos, J., Havela, L., Rondinella, V. V., Pablo, J. D., Gouder, T., Glatz, J. P., Carbol, P., and Matzke, H.. Radiochimica Acta, vol. 90, pp. 597602, 2002.Google Scholar
[9] Rondinella, V.V., Matzke, Hj., Cobos, J., Wiss, T., Mat. Res. Soc. Symp. Proc. 556 (1999) 447453.Google Scholar
[10] Rondinella, V. V., Cobos, J., Matzke, Hj., Wiss, T.. Radiochim. Acta, 88 (2000) 527531.Google Scholar
[11] Cobos, J., Matzke, Hj., Rondinella, V.V., Martinez-Esparza, A., Wiss, T., Proc. GLOBAL '99 Int. Conf. on Future Nuclear Systems, Aug. 29- Sept. 3, 1999, Jackson Hole, USA, A.N.S. Google Scholar
[12] Rondinella, V.V., Cobos, J., Matzke, Hj., Wiss, T., Carbol, P., Solatie, D.. Mat. Res. Soc. Symp. Proc. 663 (2000) 391397.Google Scholar
[13] Fernandez, A., Richter, K., Fourcaudot, S., Closset, J. C., Fuchs, C., Babelot, J. F., Voet, R. and Somers, J., Proc. 9th Cimtec, Innovative materials in Advanced Energy Technologies, Adv. In Science and Technology, 24 (1999) 539546.Google Scholar
[14] Scintrex, , Analytical measurements and instruments, analytical procedure for UA3 uranium analysis, Application Brief 79–2. Concord, Ontario, Canada, 1985.Google Scholar
[15] Solatie, D., Carbol, P., Betti, M., Bocci, F., Hiernaut, T., Rondinella, V.V., Cobos, J., Fresenius J. Anal. Chem,. 368 (2000) 8894.Google Scholar
[16] Rondinella, V. V., Betti, M., Bocci, F., Hiernaut, T., J. Cobos. Microchemical Journal 67 (2000) 301304.Google Scholar
[17] Verbist, J. J., Riga, J., Tenret-Noel, C., Pireaux, J.J.. Plutonium and other actinides (1976) 409419.Google Scholar
[18] Guilbert, S., Guittet, M. J., Barré, N., Gautier-Soyer, M., Andriambololona, Z., Trocellier, P.. Journal of Nuclear Materials 282, (1), (2000) 7582.Google Scholar
[19] McCafferty, E., Wightman, J. P., Surf. Interface Anal. 26, (1998) 549564.Google Scholar
[20] de Pablo, J., Casas, I., Giménez, J., Marti, V., Torrero, M. E.. J. Nucl. Mater. 232 (1996) 138145.Google Scholar
[21] Casas, I., Gimenez, J., Marti, V., Torrero, M.E., de Pablo, J.. Radio. Acta 66&67 (1994) 23.Google Scholar
[22] Sunder, S., Boyer, G.D., Miller, N. H., Journal of Nuclear Materials 175 (1990) 163169.Google Scholar
[23] Sunder, S., Shoesmith, D. W., Bailey, M. G., Stanchell, F. W. McIntyre, S., Journal of Electroanalytical chemistry 130 (1981) 163.Google Scholar
[24] Gmelin Handbook of Inorganic Chemistry, Uranium. Supplement Vol. D1, Verlang Chemie, Weinheim (1984).Google Scholar
[25] Wronkiewicz, D. J., Bates, J. K., Wolf, S. F. and Buck, E. C., Journal of Nuclear Materials, Volume 238, Issue 1, (1996), Pages 7895.Google Scholar