Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T17:47:49.244Z Has data issue: false hasContentIssue false

XAFS Study of Fe K Edge in Al2O3-B2O3-Fe2O3-Na2O-SiO2 Glasses

Published online by Cambridge University Press:  21 February 2013

S.V. Stefanovsky
Affiliation:
SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 Russia, [email protected] Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119071 Russia
A.A. Shiryaev
Affiliation:
Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119071 Russia
Y.V. Zubavichus
Affiliation:
NRC “Kurchatov Institute”, Kurchatov sq. 1 123182, Moscow 119117 Russia
K.M. Fox
Affiliation:
Savannah River National Laboratory, Building 773-A, Aiken 29808 U.S.A.
J.C. Marra
Affiliation:
Savannah River National Laboratory, Building 773-A, Aiken 29808 U.S.A.
Get access

Abstract

Valence state and local environment of Fe in complex glasses related to the system Al2O3-B2O3-Fe2O3-Na2O-SiO2 were studied. In all the glasses, the major fraction of Fe exists as Fe3+ ions but a minor fraction of Fe2+ ions especially in the glass with the lowest K=[SiO2]/[B2O3] ratio was also present. Average Fe—O distance in the first shell is 1.80-1.85 Å and coordination number is 4-6. The intensity due to the second sphere is rather weak demonstrating homogeneous distribution of Fe ions in the glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dmitriev, S.A., Stefanovsky, S.V., Management of Radioactive Wastes (Russ., RUCT, 2000).Google Scholar
Reynolds, J.G., Hrma, P., Mater. Res. Soc. Symp. Proc. 465, 65 (1997).CrossRefGoogle Scholar
Inagaki, Y., Sakata, H., Furuya, H., Idemitsu, K., Arima, T., Banba, T., Maeda, T., Matsumoto, S., Tamura, Y., Kikkawa, S., Mater. Res. Soc. Symp. Proc. 506, 177 (1998).CrossRefGoogle Scholar
Jantzen, C.M., Brown, K.G., J. Amer. Ceram. Soc. 90, 1866 (2007).CrossRefGoogle Scholar
Kobelev, A.P., Stefanovsky, S.V., Knyazev, O.A., Lashchenova, T.N., Holtzscheiter, E.W., Marra, J.C., Mater. Res. Soc. Symp. Proc. 932, 351 (2006).CrossRefGoogle Scholar
Kobelev, A.P., Stefanovsky, S.V., Lebedev, V.V., Polkanov, M.A., Knyazev, O.A., Marra, J. C., Glass Tech.: Eur. J. Glass Sci. Technol. A, 49, 307 (2008).Google Scholar
Kobelev, A.P., Stefanovsky, S.V., Lebedev, V.V., Suntsov, D.Y., Polkanov, M.A., Knyazev, O.A., Marra, J.C., Ceram. Trans. 222, 91 (2010).CrossRefGoogle Scholar
Deli, W.J., Bray, P.J., J. Non-Cryst. Solids, 58, 1 (1983).CrossRefGoogle Scholar
Appen, A.A., Chemistry of Glass (Russ., Khimiya, Leningrad, 1974).Google Scholar
Stefanovsky, S.V., Fox, K.M., Marra, J.C., Shiryaev, A.A., Zubavichus, Y.V., Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 53, 158 (2012).Google Scholar
Paschina, G., Piccaluga, G., Pinna, G., Magini, M., Cocco, G., J.Non-Cryst.Solids, 72, 211 (1985).Google Scholar
Brown, G.E. Jr., Waychunas, G.A., Ponader, C.W., Jackson, W.E., and McKeown, D.A., J. Phys. Colloques, 47, C8–661 (1986).Google Scholar
Binsted, N., Greaves, G.N., and Henderson, C.M.B., J. Phys. Colloques, 47, C–841 (1986).Google Scholar
Wu, Z., Bonnin-Mosbah, M., Duraud, J.P., Métrich, N., and Delaney, J.S., J.Synchrotron Rad. 6, 344 (1999).CrossRefGoogle Scholar
Giuli, G., Paris, E., Hess, K.-U., Dingwell, D.B., Cicconi, M.R., Eeckhout, S.G., Fehr, K.T., and Valenti, P., Amer.Miner., 96, 631 (2011).CrossRefGoogle Scholar
Wilke, M., Partzsch, G.M., Bernhardt, R., and Lattard, D., Chem.Geology, 220, 143 (2005).CrossRefGoogle Scholar
Marra, S.L. and Jantzen, C.M., Characterization of Projected DWPF Glasses Heat Treated to Simulate Canister Centerline Cooling (U). WSRC-TR-92–142, 1993.CrossRefGoogle Scholar
Stefanovsky, S.V., Nikonov, B.S., Fox, K.M., and Marra, J.C., Mater. Res. Soc. Symp. Proc. (2013) LL10.6.Google Scholar
Stefanovsky, S.V., Fox, K.M., and Marra, J.C., Mater. Res. Soc. Symp. Proc. (2013) LL13.11.Google Scholar
Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Meth. Phys. Res. A, 603, 95 (2009).CrossRefGoogle Scholar
Ravel, B. and Newville, M., J. Synchrotron Rad., 12, 537 (2005).CrossRefGoogle Scholar
Ankudinov, A.L. and Rehr, J.J., Phys.Rev. B, 56, 1712 (1997).CrossRefGoogle Scholar
Funke, H., Scheinost, A.C. and Chukalina, M., Phys. Rev. B, 71, 094110 (2005).CrossRefGoogle Scholar
Funke, H., Chukalina, M. and Scheinost, A.C., J. Synchrotron Radiat. 14, 426432 (2007).CrossRefGoogle Scholar
Plyusnina, I.I., Infrared Spectra of Minerals (Russ., MSU, Moscow, 1977).Google Scholar