Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T05:41:19.047Z Has data issue: false hasContentIssue false

Workplace Safety in Polymer Nanocomposite Research

Published online by Cambridge University Press:  07 February 2012

Cyrill Cattin
Affiliation:
Structures and Composite Materials Laboratory, Department of Mechanical Engineering, McGill University, Montreal QC, Canada.
Maximilien Debia
Affiliation:
Département de santé environnementale et santé au travail, Université de Montréal, Montréal QC, Canada.
André Dufresne
Affiliation:
Département de santé environnementale et santé au travail, Université de Montréal, Montréal QC, Canada.
Pascal Hubert
Affiliation:
Structures and Composite Materials Laboratory, Department of Mechanical Engineering, McGill University, Montreal QC, Canada.
Get access

Abstract

The topic of this study is focused on exposure control measures and working practices to minimize/eliminate potential health, safety, and environmental risks associated with the handling of dry nanoparticles. First, it is shown that a glove box with attached vacuum chamber for material transport and air cleaning is highly effective in minimizing occupational exposure to airborne nanoparticles. Second, the propensity for Baytubes C 150 P multi-walled carbon nanotubes to form airborne particles is found to be very low. The combined results provide useful guidelines for both the selection and the use of an engineering control to minimize/eliminate exposure to airborne carbon nanotubes, and nanoparticles in general.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K., Nat Nanotechnol 3(7), 423428 (2008).10.1038/nnano.2008.111Google Scholar
2. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. and Alexander, A., Toxicol Sci 92(1), 522 (2006).10.1093/toxsci/kfj130Google Scholar
3. Johnston, H. J., Hutchison, G. R., Christensen, F. M., Peters, S., Hankin, S., Aschberger, K. and Stone, V., Nanotoxicology 4(2), 207246 (2010).10.3109/17435390903569639Google Scholar
4. Aschberger, K., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S. M., Peters, S. A. K., Tran, C. L. and Christensen, F. M., Crit Rev Toxicol 40(9), 759790 (2010).10.3109/10408444.2010.506638Google Scholar
5. The National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA 30333, USA. Google Scholar
6. NIOSH Current Intelligence Bulletin, Occupational Exposure to Carbon Nanotubes and Nanofibers, NIOSH 161-A (November 2010 Draft), p. 59. Google Scholar
7. Cena, L. G. and Peters, T. M., Journal of Occupational and Environmental Hygiene 8(2), 8692 (2011).10.1080/15459624.2011.545943Google Scholar
8. Tsai, S. J., Ada, E., Isaacs, J. A. and Ellenbecker, M. J., Journal of Nanoparticle Research 11(1), 147161 (2009).10.1007/s11051-008-9459-zGoogle Scholar
9. Tsai, S. J., Huang, R. F. and Ellenbecker, M. J., Ann Occup Hyg 54(1), 7887 (2010).Google Scholar