Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:25:52.996Z Has data issue: false hasContentIssue false

Work Function Study for the Search of Efficient Target Materials for Use in Hyperthermal Surface Ionization Using a Scanning Kelvin Probe

Published online by Cambridge University Press:  10 February 2011

U. Petermann
Affiliation:
Department of Applied Physics, Robert Gordon University, Aberdeen, UK
I.D. Baikie
Affiliation:
Department of Applied Physics, Robert Gordon University, Aberdeen, UK
B. Lägel
Affiliation:
Department of Applied Physics, Robert Gordon University, Aberdeen, UK
K.M. Dirscherl
Affiliation:
Department of Applied Physics, Robert Gordon University, Aberdeen, UK
Get access

Abstract

In order to search for efficient target materials for use in Hyperthermal Surface lonisation (HSI), a new mass spectroscopy ionisation technique, we have performed a study of high and low work function (ø) surfaces as part of an ongoing project. HSI relies on high and low work function surfaces for the production of positive (pHSI) and negative (nHSI) ions, respectively.

Using a novel UHV Scanning Kelvin Probe we have followed the oxidation kinetics of polycrystalline Re at different temperatures and examined the effects of oxidation, flash annealing and sputter-anneal cleaning cycles via high resolution work function topographies. Our results indicate that oxidised Re is the best candidate for pHSI in terms of ionisation efficiency and ø change. The peak work function change of 2.05 eV occurred at 900 K to 950K.

For the nHSI materials Calcium exhibited the best performance with respect to the ionisation efficiency indicating a wf of 2.9 eV. We will present data in terms of mass fragmentation using an HSI-Time-of-Flight (TOF) system and time stability of the work function.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Danon, A. and Amirav, A., Rev. Sci. Instrum., 58, 1724 (1987).Google Scholar
2 Amirav, A.. Org. Mass Spectrom. 26, 1 (1991).Google Scholar
3 Kelvin, Lord, Philos. Mag. 46, 82 (1898).Google Scholar
4 Zisman, W.A., Rev. Sci. Instrum., 3, 367 (1932).Google Scholar
5 Baikie, I.D., Venderbosch, E., Meyer, J.A. and Estrup, P.J, Rev. Sci. Instrum., 62, 725 (1991).Google Scholar
6 Baikie, I. D., Mackenzie, S., Estrup, P.J. Z. and Meyer, J.A., Rev. Sci. Instrum., 62, 1326 (1991).Google Scholar
7 Ritty, B., Wachtel, F., Manquenouille, R., Ott, F. and Donnet, J.B., J. Phys. E. 15, 310 (1982).Google Scholar
8 Baikie, I.D., Mat.Res. Soc. Proc, 204, 363 (1991).Google Scholar
9 Baikie, I.D., Petermann, U. and Lägel, B., Surf. Sci. 433–435, 249 (1999).Google Scholar
10 Meyer, J.A., Baikie, I.D., Lopinski, G.P., Prybyla, J.A. and Estrup, P.J., J. Vac. Sci. Technol., 8, 2468 (1990).Google Scholar
11 Kopatzhi, E., Keck, H.-G, Baikie, I.D., Meyer, J.A. and Behm, R.J., Surf. Sci. 345, L11(1996).Google Scholar
12 Meyer, J.A., Baikie, I.D., Kopatzki, E. and Behm, R.J., Surf Sci. 365, L647 (1996).Google Scholar
13 Baikie, I.D., Petermann, U. and Lägel, B., Surf Sci. 433–435, 770 (1999).Google Scholar
14 Baikie, I.D. and Bruggink, G.H., Mat. Res. Soc. Proc., 309, 35 (1993).Google Scholar
15 Baikie, I. D., VenderBosch, E. and Hall, B., Mat. Res. Soc. Proc., 261, 149 (1992).Google Scholar
16 Lägel, B., Baikie, I.D. and Petermann, U., Mat. Res. Soc. Proc., 510, 619 (1998).Google Scholar
17 Lägel, B., Baikie, I.D. and Petermann, U., Surf Sci. 433–435, 622 (1999).Google Scholar
18 Baikie, I.D. and Bruggink, G.H., Mat. Res. Soc. Proc., 306, 311 (1993).Google Scholar
19 Petermann, U., Baikie, I.D. and Lägel, B., Thin Solid Films 343–344, 492 (1999).Google Scholar
20 Höfer, U., Morgen, P., Wurth, W., Phy. Rev. B 40, 1130 (1989).Google Scholar
21 Baikie, I.D., Mat. Res. Soc. Proc., 259, 149 (1992).Google Scholar
22 Amirav, A. and Danon, A., J. Phys. Chem. 93, 5549 (1989)Google Scholar
23 Lägel, B., Baikie, I.D., Dirscherl, K.M. and Petermann, U., to be published in Mat. Res. Soc. Proc.L (2000)Google Scholar
24 Fusy, J., Bigeard, B., Cassuto, A., Surf. Sci. 46, 177 (1974).Google Scholar
25 Zehner, D.M., Farnsworth, H.E., Surf. Sci. 30, 335 (1972)Google Scholar