Published online by Cambridge University Press: 28 February 2011
Defense-generated transuranic (TRU) waste will be stored at WIPP in the bedded halite of the Salado Formation (Permian), which is overlain by the impure Permian evaporites of the Rustler Formation and the Dewey Lake Red Beds. Both the Rustler and Dewey Lake contain abundant to less common secondary selenite veins of uncertain origin, and dissolution zones occur in the Rustler. The Rustler Formation also contains two dolomite aquifers, the Magenta and Culebra members. The purpose of this study is to determine whether vein selenite is locally derived, or has been introduced in moving groundwater solutions. We have used Sr isotopic studies and REE, U and other trace element data to address the problem. The Sr isotopic data show that neither the Salado nor Rustler anhydrites have exchanged with secondary sources of Sr, and this is supported by the REE and U data. Further, selenite veins from the Rustler possess Sr isotopic compositions identical to the Rustler, indicating local origin, and this is also supported by the U and REE data. Selenite veins from the Dewey Lake Red Beds possess Sr isotopic compositions closer to surface caliche deposits, and may contain near-surface derived Sr. U and REE data show more scatter and evidence for extrinsic sources than the vein/host-rock pairs from the Rustler. Sr isotopic compositions of the Magenta and Culebra indicate that the Magenta has undergone less water/rock interaction than the Culebra. Collectively, the data argue for more possible surface or near-surface water/rock interactions in the Dewey Lake Red Beds than in the Rustler Formation; such interactions in the Salado Formation have been minimal.