Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:33:25.675Z Has data issue: false hasContentIssue false

What is the true nature of conducting proton in perovskite ceramic membrane: hydroxyl ion or interstitial proton ?

Published online by Cambridge University Press:  22 March 2011

Aneta Slodczyk
Affiliation:
LADIR, UMR7075 CNRS & UPMC, Thiais, 94320, France.
Philippe Colomban
Affiliation:
LADIR, UMR7075 CNRS & UPMC, Thiais, 94320, France.
Oumaya Zaafrani
Affiliation:
LADIR, UMR7075 CNRS & UPMC, Thiais, 94320, France.
Olivier Lacroix
Affiliation:
AREVA NP, Université Montpellier 2, Montpellier, 34095, France.
Johan Loricourt
Affiliation:
SCT, Bazet, 65460, France.
Frederic Grasset
Affiliation:
AREVA NP, Université Montpellier 2, Montpellier, 34095, France.
Beatrice Sala
Affiliation:
AREVA NP, Université Montpellier 2, Montpellier, 34095, France.
Get access

Abstract

The proton conducting perovskites are widely investigated due to their high potential as electrolyte membranes of fuel cells, water steam electrolysers and CO2/syngas converters. Our comprehensive spectroscopic (Raman, IR, neutron), thermogravimetric, elastic and quasi-elastic neutron diffusion as well as conductivity studies performed on Ln/RE- modified zirconate ceramics with controlled densification (90-99% of theoretical density) reveal the important differences between the surface and bulk protonic species. The results clearly show that trivialization of the protonation process complexity can favorite the adsorption of the surface protonic species (hydroxide, hydrocarbonates, etc), prohibit the incorporation of bulk protons, i.e. species responsible for the proton conduction and confuse the understanding of fundamental aspects concerning the proton conductors such as the true nature of conducting species. Our studies reveal that OH- ions are located at the surface of poor densified ceramic and the bulk conducting protons exhibit an ionic, free of covalent-bonded nature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olah, G. A., Angew. Chem. Int. Ed 44, 26362639 (2005).Google Scholar
2. Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Solid State Ionics 3/4, 359-363 (1981).10.1016/0167-2738(81)90113-2Google Scholar
3. Colomban, Ph., Ed. Proton Conductors: Solids, membranes and gel – materials and devices. Cambridge University Press, Cambridge, (1992).Google Scholar
4. Colomban, Ph., Ann. Chimie Sci. Matériaux Paris 24, 118 (1999).10.1016/S0151-9107(99)80030-0Google Scholar
5. Norby, T., Kim, S., Yamaguchi, S. and Elliot, J. (eds.), MRS Bull., 34 [12] 923928 (2009).Google Scholar
6. Kreuer, K. D., Ann. Rev. Mater. Res. 33, 333359 (2003).Google Scholar
7. Schober, T. and Bohn, H. G., Solid State Ionics 127, 351360 (2000).Google Scholar
8. Nowick, A. S. and Du, Y., Solid State Ionics 77, 137146 (1995).10.1016/0167-2738(94)00230-PGoogle Scholar
9. , J.. Irvine, T. S., Corcoran, D. J. D., Lashtabeg, A. and Walton, J. C., Solid State Ionics 154-155, 447453 (2002).Google Scholar
10. Karlsson, M., Bjorketun, M. E., Sundell, P. G., Matic, A., Wahnstrom, G., Engberg, P., Borjesson, L., Ahmed, I., Berastegui, P. Phys. Rev. B 72, 094303 (2005).Google Scholar
11. Glerup, M., Poulsen, F. W. and Berg, R. W., Solid State Ionics 148, 8392 (2002).Google Scholar
12. Sata, N., Ishigame, M. and Shin, S., Solid State Ionics 86-88, 629632 (1996).Google Scholar
13. Omata, T., Takagi, M. and Otsuka-Yao-Matsuo, S., Solid State Ionics 168, 99109 (2004).Google Scholar
14. Slodczyk, A., Colomban, Ph., Willemin, S., Lacroix, O. and Sala, B., J. Raman Spectrosc. 40 513521 (2009).Google Scholar
15. Colomban, Ph., Slodczyk, A., Lamago, D., Andre, G., Zaafrani, O., Lacroix, O., Willemin, S. and Sala, B., J. Phys. Soc. Jpn 79, Suppl. A 16 (2010).Google Scholar
16. Animitsa, I., Denisova, T., Neiman, A., Nepryahin, A., Kochetova, N., Zhuravlev, N. and Colomban, Ph., Solid State Ionics 162-163, 7381 (2003).Google Scholar
17. Kobayashi, T., Abe, K., Ukyo, Y. and Matsumoto, H., Solid State Ionics 138, 243251 (2001).Google Scholar
18. PCT Patent WO 2008/152317 A2 (18-12-2008). Google Scholar
19. Mioc, U. B., Colomban, Ph., Davidovic, M. and Tomkinson, J., J. Mol. Struct. 326 99107 (1994).Google Scholar
20. Colomban, Ph. and Tomkinson, J., Solid State Ionics 97, 123134 (1997).Google Scholar
21. Slodczyk, A., Dabrowski, B., Malikova, N. and Colomban, Ph., Mater. Res. Soc. Symp. Proc. 1311 GG0625 (2010).Google Scholar
22. Jalarvo, N., Haavik, C., Kongshaug, C., Norby, P. and Norby, T., Solid State Ionics 180, 11511156 (2009).Google Scholar