Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:40:05.989Z Has data issue: false hasContentIssue false

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?

Published online by Cambridge University Press:  21 February 2011

Gary S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
Kurt Kremer
Affiliation:
Institut für Festerkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, Federal Republic of Germany
Michael Murat
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
Get access

Abstract

We describe how molecular dynamics simulations for a relatively simple coarse grained model can be very useful for investigating the static and dynamic properties of polymers and other macromolecular liquids. We show that it is important to use a simplified coarse grained model instead of a detailed microscopic model if one is interested in studying on modern supercomputers large systems which also relax slowly. As examples we present results for isolated star polymers with f-arms and diluted gelation/percolation clusters. We find in agreement with recent neutron scattering experiments that diluted percolation clusters swell and that their fractal dimension is reduced from 2.5 to 2. We also discuss our results for a dense melt of entangled linear polymers to show that the method is effective at high density. Our results for the entangled melt cover the crossover from Rouse to reptation and strongly support the concept of reptation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. deGennes, P. G., Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, NY, 1979).Google Scholar
2. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
3. Binder, K., in Molecular Level Calculations of the Structure and Properties of Non-Crystalline Polymers, edited by Biscerano, J. (Dekker, New York, 1989).Google Scholar
4. Edwards, S. F., Proc. Phys. Soc. 92, 9 (1980).Google Scholar
5. deGennes, P. G., J. Chem. Phys. 55, 572 (1971).Google Scholar
6. Kremer, K. and Grest, G. S., in Computer Simulations of Polymers, edited by R. J. Roe (to be published).Google Scholar
7. Kolinski, A., Skolnick, J., and Yaris, R., J. Chem. Phys. 86, 1567 (1987).Google Scholar
8. Kremer, K. and Binder, K., Comp. Phys. Rept. 7, 261 (1989).Google Scholar
9. Kremer, K., Grest, G. S., and Carmesin, I., Phys. Rev. Lett. 61, 566 (1988); K. Kremer and G. S. Grest, J. Chem. Phys., 1990.Google Scholar
10. Rigby, D. and Roe, R. J., J. Chem. Phys. 87, 7285 (1987); 89, 5280 (1988).Google Scholar
11. Clarke, J. H. R. and Brown, D., Mol. Sim. 3, 27 (1989).Google Scholar
12. Balazs, A. C., Anderson, C., and Muthukumar, M., Macromolecules 20, 1999 (1987).Google Scholar
13. Carmesin, I. and Kremer, K., Macromolecules 21, 2819 (1988).Google Scholar
14. Dünweg, B. and Kremer, K., in preparation.Google Scholar
15. Grest, G. S., Dünweg, B., and Kremer, K., Comp. Phys. Comm. 55, 269 (1989).Google Scholar
16. Daoud, M. and Cotton, J. P., J. Phys. (Paris) 43, 531 (1982).Google Scholar
17. Birshtein, T. M., Zhulina, E. B., and Borisov, O. V., Polymer 27, 1078 (1986).Google Scholar
18. Rouse, P. E., J. Chem. Phys. 21, 1273 (1953).Google Scholar
19. Murat, M. and Grest, G. S., Phys. Rev. Lett. 63, 1074 (1989); Macromolecules 22, 4054 (1989).Google Scholar
20. Chakrabarti, A. and Toral, R., (to be published).Google Scholar
21. Grest, G. S. and Kremer, K., Phys. Rev. A 33, 3628 (1986).Google Scholar
22. Bird, R. B., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric Liquids (Wiley, New York, 1977), Vol.1.Google Scholar
23. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ (1971).Google Scholar
24. Burchard, W., Adv. Polym. Sci. 48, 1 (1983).Google Scholar
25. Bauer, B. J., Fetters, L. J., Graessley, W. W., Hadjichristidis, N., and Quack, G. F., Macromolecules 22, 2337 (1989).Google Scholar
26. Crest, G. S., Kremer, K., and Witten, T. A., Macromolecules 20, 1376 (1987).Google Scholar
27. Grest, G. S., Kremer, K., Milner, S. T., and Witten, T. A., Macromolecules 22, 1904 (1989).Google Scholar
28. Richter, D., Farago, B., Fetters, L. J., Huang, J., and Ewen, B., Macromolecules (1990).Google Scholar
29. Batoulis, J. and Kremer, K., Europhys. Lett. 7, 683 (1988).Google Scholar
30. Daoud, M., Family, F., and Jannink, G., J. Phys. Lett. (Paris) 45, 199 (1984).Google Scholar
31. Flory, P., Statistical Mechanics of Chain Molecules, (Interscience, New York, 1969).Google Scholar
32. Cates, M. E., Phys. Rev. Lett. 53, 926 (1984).Google Scholar
33. Stauffer, D., J. Chem. Soc. Faraday Trans. 272, 1354 (1976).Google Scholar
34. Alexander, S. and Orbach, R., J. Phys. Lett. (Paris) 43, L625 (1982).Google Scholar
35. Rammal, R. and Toulouse, G., J. Phys. Lett. (Paris) 44, L13 (1983).Google Scholar
36. Grest, G. S. and Murat, M., (to be published).Google Scholar
37. Adam, M., Delsanti, M., Munch, J. P., and Durand, D., J. Phys. (Paris) 48, 1809 (1987).Google Scholar
38. Bouchaud, E., Delsanti, M., Adam, M., Daoud, M. and Durand, D., J. Phys. (Paris) 47, 1273 (1986).Google Scholar
39. Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R., and Meakin, P., Nature 339, 360 (1989).Google Scholar
40. Abraham, F. F., Rudge, W. E., and Plischke, M., Phys. Rev. Lett. 62, 1757 (1989).Google Scholar
41. Kantor, Y., Kardar, M., and Nelson, D. R., Phys. Rev. Lett. 57, 791 (1986); Phys. Rev. A 35, 3056 (1987).Google Scholar
42. Abraham, F. F. and Nelson, D. R., (to be published).Google Scholar
43. Baumgärtner, A., Ann. Rev. Phys. Chem. 35, 419 (1984).Google Scholar