Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T13:08:06.698Z Has data issue: false hasContentIssue false

Wet Air Oxidation of Phenol over Ru Based Catalysts – Effects of Support

Published online by Cambridge University Press:  01 February 2011

A. E. Espinosa des Los Monteros
Affiliation:
Université de Poitiers, LACCO UMR 6503, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France. Email: [email protected] Universidad Juárez Autónoma de Tabasco, DACB, Laboratorio de Catálisis Heterogénea Km.1 Carretera Cunduacan-Jalpa de Méndez, CP86690, A.P. 24, Cunduacan Tabasco, México
G. Lafaye
Affiliation:
Université de Poitiers, LACCO UMR 6503, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France. Email: [email protected]
G. Torres
Affiliation:
Universidad Juárez Autónoma de Tabasco, DACB, Laboratorio de Catálisis Heterogénea Km.1 Carretera Cunduacan-Jalpa de Méndez, CP86690, A.P. 24, Cunduacan Tabasco, México
J. Barbier Jr
Affiliation:
Université de Poitiers, LACCO UMR 6503, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France. Email: [email protected]
Get access

Abstract

Catalytic wet air oxidation (CWAO) of aqueous solutions of phenol was performed on ruthenium catalysts supported on different oxides: TiO2, ZrO2 and their doped ceria mixtures. Phenol was chosen as a model pollutant molecule because of its wide use in industrial processes. All the samples were found to be highly active for phenol oxidation and the various titania-ceria mixtures were the most efficient for total organic carbon (TOC) removal. ICP analysis of the remaining solution after reaction revealed that ruthenium has not leached. Moreover, elementary analysis of the used catalysts showed that the deposition of carbonaceous species on the surface of the catalysts was rather low and was dependent on the nature of the support.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Oliviero, L., Barbier, J. Jr, Labruquére, S. and Duprez, D., Catal. Lett. 60 (1999) 15.Google Scholar
[2] Imamura, S., Fukuda, I., Ishida, S., Ind. Eng. Chem. Res. 27 (1988) 721.Google Scholar
[3] Mikulová, J., Rossignol, S., Barbier, J. Jr, Mesnard, D., Kappenstein, C., Duprez, D., Appl.Catal. B 72 (2007) 1.Google Scholar
[4] Keav, S., Barbier, J. Jr, Duprez, D., Catal. Today 151 (2010) 143.Google Scholar
[5] Mikulovà, J., Rossignol, S., Gérard, F., Mesnard, D., Kappenstein, C., Duprez, D., J. Solid States Chem. 179 (2006) 2496.Google Scholar
[6] Mishra, S.V., Mahajani, V.M., Joshi, J.B., Ind. Eng. Chem. Res., 34 (1995) 2.Google Scholar
[7] Rossignol, S., Madier, Y., Duprey, D., Catal.Today 50 (1999) 26.Google Scholar
[8] Triki, M., Ksibi, Z., Ghorbel, A., Medina, F., Micropor. Mesopor. Mater. 117 (2009) 431.Google Scholar
[9] Zhang, X., Luo, L., Duan, Z., React. Kinet. Catal. Lett. 87 (2006) 43.Google Scholar
[10] Francisco, M.S.P., Mastelaro, V.R., Nascente, P.A.P., Florentino, A.O., J. Phys. Chem. B 105 (2001) 10515.Google Scholar
[11] Levec, J., Pintar, A., Catal. Today 124 (2007) 172.Google Scholar
[12] Mantzavinos, D., Hellenbrand, R., Livingston, A.G., Metcalfe, I.S., Appl. Catal. B 7 (1996) 379.Google Scholar
[13] Santos, A., Yustos, P., Quintanilla, A., Ruiz, G., Garcia-Ochoa, F., Appl. Catal. B 61 (2005) 323.Google Scholar
[14] Pintar, A., Levec, J., Catalytic, , J. Catal. 135, (1992) 345.Google Scholar