Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T02:34:43.006Z Has data issue: false hasContentIssue false

Water Soluble Benzobisazole Rigid-Rod Copolymers

Published online by Cambridge University Press:  15 February 2011

Thuy D. Dang
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469-0168
Fred E. Arnold
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433-7750.
Get access

Abstract

Although benzobisazole rigid-rod polymers are well recognized for their outstanding tensile and modulus properties as well as their excellent thermal and thermal-oxidative stabilities, they can only be fabricated from acidic solvents. Benzobisirnidazole polymers containing pendent benthiazole or sulfonic acid groups exhibit partial solubility in DMSO. Reaction of these systems with sodium methylsulfinylmethide in DMSO abstracts the acidic proton from the benzobisimidazo unit and forms the polyanion. Subsequent reaction of the polyanion with 1,3-propanesultone provides water soluble systems. Random copolymers containing benzobisimidazo and benzobisthiazole repeat units were prepared in polyphosphoric acid and subjected to the derivatization reaction. Benzobisimidazo content in the copolymers varied from 10–0 mole percent. Minimum ionic charge along the rigid-rod backbone to obtain water solubility was determined to be approximately 10 mole percent as reflected in the benzobisimidazole repeat units.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kovar, R. F. and Arnold, F. E., I. Polym. Sci. Pohym. Chemn. Ed. 14, 1807 (1976).Google Scholar
2. Wolfe, J. F. and Arnold, F. E., Macromolecules 14, 909 (1981).CrossRefGoogle Scholar
3. Wolfe, J. F., Loo, B. H. and Arnold, F. E., Macromolecules 14, 915 (1981).CrossRefGoogle Scholar
4. Tsai, T. T. and Arnold, F. E., High. Perf. Polym. 3, 179 (1989).CrossRefGoogle Scholar
5. Dang, T. D., Tan, L. S. and Arnold, F. E., Amn. Chem. Soc. Polym. Mat. Sci. Eng. Proc. 62, 86 (1990).Google Scholar
6. Arnold, F. E., Mat. Res. Soc. Symp. Proc. 134, 117 (1989).CrossRefGoogle Scholar
7. Uno, K., Niuine, K., Iwata, Y., Toda, F. and Iwakura, Y., J. Pohy. Sci. Polym. Chemn. Ed. 15 1309 (1977).CrossRefGoogle Scholar
8. Dang, T. D., Moore, D. R. and Evers, R. C., J. Polym. Sci. Polym. Chiem. Ed., 29, 121 (1991).Google Scholar
9. Burch, R. R., Sweeny, W., Schnhidt, H. W. and Kim, Y. H., Macromolecules, 23, 106 (1990).CrossRefGoogle Scholar
10. Reynolds, J. R., Baker, C. K. and Gieselman, M., Am. Chem. Soc. Div. Polym. Chemn. Prepr. 30, 1,151 (1989).Google Scholar
11. Sundaresan, N. S., Basak, S., Pomerntz, M. and Reynolds, J. R., J. Chem. Soc., Chemn. Commun. 621 (1987).CrossRefGoogle Scholar
12. Bergeron, J. Y., Chevalier, J. W. and Dao, L. H., J. Chem. Soc., Chem. Commun., 180 (1990).CrossRefGoogle Scholar
13. Dang, T. D., Tan, L. S. and Arnold, F. E., Am. Chem. Soc. Div. Polym. Chemn. Prepr., 31 541 (1990).Google Scholar