Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:06:49.584Z Has data issue: false hasContentIssue false

Wafer Fusion ofGaSb to GaAs

Published online by Cambridge University Press:  02 August 2011

C.A. Wang
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108
Z.L. Liau
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108
D.A. Shiau
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108
P.M. Nitishin
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108
Get access

Abstract

Atomic wafer fusion of GaSb to GaAs, and the transfer of epitaxial GaSb/GaInAsSb/GaSb heterostructures to GaAs by fusion and substrate removal are demonstrated for the first time. Wafers and epilayers were fused with or without application of mechanical pressure at temperatures as low as 350 °C. A periodic pattern of grooves etched into the GaAs wafer and an overpressure of As and Sb vapor were used to improve covalent bonding. Varying degrees of mass transport and covalent bond formation between wafers were observed in cleaved crosssections under high-resolution scanning electron microscopy. Epilayers fused without pressure application exhibited significantly better structural and optical properties compared to those fused with pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blank, H.-R., Thomas, M., Wong, K.C., and Kroemer, H., Appl. Phys. Lett. 69, 2080 (1996).Google Scholar
2. Eyink, K.G., Seaford, M.L., Haas, T.W., Tomich, D.H., Lampert, W.V., Walck, S.D., Solomon, J.S.,Mitchel, W.C., and Eastman, L.F., J. Vac. Sci. Technol. B 15, 1187 (1997).Google Scholar
3. Hobart, K.D. and Kub, F.J., Electron. Lett. 35, 675 (1999).Google Scholar
4. Zheng, Y., Moran, P.D., Guan, Z.F., Lau, S.S., Hansen, D.M., Kuech, T.F., Haynes, T.E., Hoechbauer, T., and Natasi, M., J. Electron. Mater. 29, 916 (2000).Google Scholar
5. Yi, S.S., Hansen, D.M., Inoki, C.K., Harris, D.L., Kuan, T.S., and Kuech, T.F., Appl. Phys. Lett. 77, 842 (2000).Google Scholar
6. Moran, P.D., Chow, D., Hunter, A., and Kuech, T.F., Appl. Phys. Lett. 78, 2232 (2001).Google Scholar
7. Palmisiano, M.N., Biefeld, R.M., Cederberg, J.G., Hafich, M.J., Peake, G.M., AIP Conf. Proc. 653, 305313 (2003).Google Scholar
8. Wang, C.A., Murphy, P.G., O'Brien, P.W., Shiau, D.A., Anderson, A.C., Liau, Z.L., DePoy, D.M., Nichols, G., AIP Conf. Proc. 653, 473481 (2003).Google Scholar
9. Liau, Z.L. and Mull, D.E., Appl. Phys. Lett. 56, 737 (1990).Google Scholar
10. Lo, Y.H., Bhat, R., Huang, D.M., Koza, M.A., and Lee, T.P., Appl. Phys. Lett. 58, 1961 (1991).Google Scholar
11. Dudley, J.J., Babic, D.I., Mirin, R., Yang, L., Miller, B.I., Ram, R.J., Reynolds, T., Hu, E.L., and Bowers, J.E., Appl. Phys. Lett. 64, 1463 (1994).Google Scholar
12. Kish, F.A., Steranka, F.M., DeFevere, D.C., Vanderwater, D.A., Park, K.G., Kuo, C.P., Osentowski, T. D., Peanasky, M.J., Yu, J.G., Fletcher, R.M., Steigerwald, D.A., Craford, M.G., Robbins, V.M., Appl. Phys. Lett. 64, 2839 (1994).Google Scholar
13. Liau, Z.L., Appl. Phys. Lett. 77, 651 (2000).Google Scholar
14. Wang, C.A., Choi, H.K., Charache, G.W., IEE Proc.-Optoelectron. 147, 193198 (2000).Google Scholar