Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:34:24.120Z Has data issue: false hasContentIssue false

VUV- and Soft X-Ray-Induced Optical Luminescence and X-Ray Absorption Fine Structures of Porous Silicon

Published online by Cambridge University Press:  25 February 2011

T. K. Sham
Affiliation:
Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
D. T. Jiang
Affiliation:
Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
I. Coulthard
Affiliation:
Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
J. W. Lorimer
Affiliation:
Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
X. H. Feng
Affiliation:
Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
K. H. Tan
Affiliation:
Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
S. P. Frigo
Affiliation:
Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589
R. A. Rosenberg
Affiliation:
Advance Photon Source, Argonne National Laboratory, Argonne, IL 60439
D. C. Houghton
Affiliation:
Advance Photon Source, Argonne National Laboratory, Argonne, IL 60439
B. Bryskiewicz
Affiliation:
Institute for Microstructural Science, National Research Council, Ottawa Kl A 0R6, Canada.
Get access

Abstract

Optical luminescence in porous silicon induced by soft X-ray and vacuum UV excitation with energies in the vicinity of the Si K-edge (1838 eV) and the Si L-edge (99 eV) has been observed. The luminescence has been used, together with total electron yield, to record X-ray absorption fine structure (XAFS) in the near-edge region of both Si edges. The near- edge spectra recorded simultaneously with either luminescence or total electron yield were compared, and the implications of these measurements for the structure of porous silicon are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pickering, C., Beale, M.I.J., Robertson, D.J., Pearson, P.J. and Greef, R.J., J. Phys. C: Solid State Phys. 17, 6535 (1984).Google Scholar
2. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3. Uhlir, A., Bell Syst. Tech. J. 35, 333 (1956).Google Scholar
4. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).Google Scholar
5. Sailor, M.J. and Kavanagh, K.L., Adv. Mater. 4, 432 (1992).Google Scholar
6. Cullis, A.G. and Canham, L.T., Nature (London), 353, 335 (1991).Google Scholar
7. Canham, L.T., Houlton, M.R., Leong, W.Y., Pickering, C. and Keen, J.M., J. Appl. Phys., 70, 422 (1991).Google Scholar
8. Lehmann, V., Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
9. Fuchs, H.D., Brandt, M.S., Stutzmann, M. and Weber, J., Mat. Res. Soc. Symp. Proc. 265, 159 (1992).Google Scholar
10. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
11. Weiss, A., Beiland, G. and Mayer, H., Z. Naturforsch. 34b, 25 (1979).Google Scholar
12. Coulthard, I., Lorimer, J.W. and Sham, T.K., Abstract 824RNP, 118th Meeting, The Electrochemical Society, Toronto, Oct., 1992.Google Scholar
13. Fathauer, R.W., George, T., Ksendzov, A., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
14. Vasquez, R.P., Fathauer, R.W, Geoge, T., Ksendzov, A., Lin, T.L., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
15. van Buuren, T., Gao, Y., Tiedje, T., Dahn, J.R. and Way, B.M., Appl. Phys. Lett. 60, 3013 (1992).Google Scholar
16. Sham, T.K., Feng, X.H., Jiang, D.T., Yang, B.X., Xiong, J.Z., Bzowski, A., Houghton, D.C., Bryskiewicz, B. and Wang, E., Phys, Can. J.., accepted.Google Scholar
17. Terry, J., Liu, H., Woicik, J., Cao, R. and Pianetta, P., Abstract, 39th National Symposium, American Vacuum Society, Chocago, November, 1992.Google Scholar
18. Sham, T.K., Feng, X.H., Jiang, D.T., Tan, K.H., Frigo, S.P., Rosenberg, R. A., Houghton, D.C. and Bryskiewicz, B., Jpn. J. Appl. Phys., Part 2, accepted.Google Scholar
19. Proceedings of the VIIth. Int. Conf. on X-ray Absorption Fine Structures, Kobe, Japan, Aug., 1992; to be published in Jpn. J. Appl. Phys., Part 1.Google Scholar
20. Yang, B.X., Middelton, F.H., Olsson, B.G., Bancroft, G.M., Chen, J.M., Sham, T.K., Tan, K.H. and Wallace, D.J., Nucl. Instrum. Methods Phys. Res., A316, 422 (1992).Google Scholar
21. Historically, strong absorption at the edge appeared as a whiteline in the photographic plate detector.Google Scholar
22. Emura, S., Moriga, T., Takizawa, J., Normura, M., Bauchspieβ, K. R., Murata, T., Harada, K. and Maeda, H., Phys. Rev. B.; submitted and private communication.Google Scholar
23. Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.L. and Fukikawa, B.K., Atomic Data and Nuclear Data Tables 27, 1144 (1982).Google Scholar