Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:49:39.744Z Has data issue: false hasContentIssue false

The Volumetric Response of Polymeric Glasses to Complex Thermomechanical Histories: a Critical Evaluation of the Kahr Model

Published online by Cambridge University Press:  16 February 2011

J. Greener
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2104.
J. M. O'reilly
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2104.
K. C. Ng
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2104.
Get access

Abstract

The KAHR model was used to predict the transient volumetric response of poly(vinyl acetate) (PVAc) and polystyrene (PS) glasses in various experiments involving controlled variations of temperature and pressure in the vicinity of the glass transition. The experiments considered include contraction following a quench from equilibrium, expansion after a temperature “jump,” and pressure-induced densification. The model parameters of PVAc were obtained by fitting experimental data via a 4-parameter Levenberg-Marquardt optimization. The optimized parameters were then used to predict the response of the material in three different experiments. The response of PS in a pressure densification experiment was also analyzed and compared with existing data. Generally, the predicted response of PVAc in the various temperature jump experiments is in excellent agreement with observation. The prediction of the response of PS in the pressure densification experiment is also in line with observation although the data for this case is limited and the results are still inconclusive.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M. and Ramos, A. R., J. Polym. Sci., Polym. Phys. Ed., 17, 1097 (1979).Google Scholar
2. Ramos, A. R., Kovacs, A. J., O'Reilly, J. M., Tribone, J. J. and Greener, J., J. Polym. Sci., Polym. Phys. Ed., 26, 501 (1988).Google Scholar
3. Tool, A. Q., J. Am. Ceram. Soc., 29, 240 (1946).Google Scholar
4. Narayanaswamy, O. S., J. Am. Ceram. Soc., 54, 491 (1971).Google Scholar
5. Williams, G. and Watts, D. C., Trans. Faraday Soc., 66 80 (1970).CrossRefGoogle Scholar
6. Tribone, J. J., O'Reilly, J. M. and Greener, J., J. Polym. Sci., Polym. Phys. Ed., 27, 837 (1989).Google Scholar
7. Kovacs, A. J., Fortsch. Hochpolym. Forsch.,3, 394 (1963).CrossRefGoogle Scholar
8. Robertson, R. E., Simha, R. and Curro, J. G., Macromol., 1Z, 911 (1984).Google Scholar
9. Robertson, R. E., Simha, R. and Curro, J. G., Macromol., 18, 2239 (1985).Google Scholar
10. Sasabe, H. and Moynihan, C. T., J. Polym. Sci., Polym. Phys. Ed., 16, 1447 (1978).Google Scholar
11. Tribone, J. J., Jamieson, A. M. and Simha, R., J. Polym. Sci., Polym. Symp., 71, 231 (1984).Google Scholar
12. Tribone, J. J., O'Reilly, J. M. and Greener, J., Macromol., 12, 1732 (1986).CrossRefGoogle Scholar
13. Hodge, I. M. and Huvard, G. S., Macromol., 16, 371 (1983).Google Scholar
14. Kogowski, G. J. and Filisko, F. E., Macromol., 19, 828 (1986).Google Scholar
16. Shishkin, N. I., Soy. Phys. (Solid State), 2, 322 (1960).Google Scholar
15. McKinney, J. E. and Simha, R., J. Res. Nat. Bur. Stand., Sect. A, 81, 273 (1977).Google Scholar
16. Shishkin, N. I., Sov. Phys. (Solid State), 2, 322 (1960).Google Scholar
17. Weitz, A. and Wunderlich, B., J. Polym. Sci., Polym. Phys. Ed., 12, 2473 (1974).Google Scholar
18. Oels, H.-J. and Rehage, G., Macromol., 10, 1036 (1977).CrossRefGoogle Scholar