Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:59:14.536Z Has data issue: false hasContentIssue false

Void Formation in Hydrogen Implanted and Subsequently Plasma Hydrogenated and Annealed Czochralski Silicon

Published online by Cambridge University Press:  01 February 2011

R. Job
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
W. Düngen
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
Y. Ma
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
Y. L. Huang
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
J. T. Horstmann
Affiliation:
University of Dortmund, Faculty of Electrical Engineering and Information Technology, D-44227 Dortmund, Germany
Get access

Abstract

By μ-Raman spectroscopy the formation of hydrogen related defects (vacancy-hydrogencomplexes, hydrogen saturated silicon dangling bonds, H2 molecules in multi-vacancies andvoids/platelets) has been investigated in H-implanted and subsequently H-plasma exposed andannealed Czochralski (Cz) silicon wafers. Annealing was done either in air or in an ambientcontaining hydrogen (forming gas). The investigations were applied under conditions, which arerelevant for ion-cut processes and layer exfoliation in Cz Si for SOI-wafer fabrication at reducedimplantation doses (as compared to standard procedures like the smart-cut® process).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bruel, M., Electronics Lett. 31, 1201 (1995).Google Scholar
2 Usenko, A. Y., Ulyashin, A. G., Jpn. J. Appl. Phys. 41, 5021 (2002).Google Scholar
3 Job, R., Beaufort, M. F., Barbot, J. F., Ulyashin, A. G., Fahrner, W. R., MRS Symp. Proc. Series 719, 217 (2002).Google Scholar
4 Job, R., Ma, Y., Huang, Y.-L., Ulyashin, A.G., Fahrner, W.R., Beaufort, M.-F., Barbot, J.-F., Diffusion & Defect Data Pt. B: Solid State Phenomena 95-96, 141 (2003).Google Scholar
5 Job, R., Ulyashin, A. G., Fahrner, W. R., Beaufort, M. F., Barbot, J. F., The European Physical Journal - Applied Physics 23, 25 (2003).Google Scholar
6 Job, R., Ma, Y., Ulyashin, A. G., MRS Symp. Proc. Series 788, 571 (2004).Google Scholar
7 Ma, Y., Job, R., Huang, Y. L., Fahrner, W. R., Beaufort, M.F., Barbot, J.F., J. Electrochem. Soc. 151, G627 (2004).Google Scholar
8 Job, R., Ma, Y., Huang, Y. L., Düngen, W., Electrochem. Soc. Proc., 2004-05; 407 (2004).Google Scholar
9 Ma, Y., Huang, Y. L., Job, R., Fahrner, W. R., Pys. Rev. B 71, 045206 (2005).Google Scholar
10 Shinohara, M., Kuwano, T., Akama, Y., Kimura, Y., Niwano, M., J. Vac. Sci. Technol. A 21, 25 (2003).Google Scholar
11 Chabal, Y. J., Higashi, G. S., Raghavachari, K., J. Vac. Sci. Technol. A7, 2104 (1989).Google Scholar
12 Delfino, M., Salimian, S., Hodul, D., Ellingboe, A., Tsai, W., J. Appl. Phys. 71, 1001 (1992).Google Scholar
13 Higashi, G. S., Chabal, Y. J., Trucks, G. W., Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
14 Chabal, Y. J., Raghavachari, K., Phys. Rev. Lett. 54, 1055 (1985).Google Scholar
15 Nielsen, B. Bech, Hoffmann, L., Budde, M., Mater. Sci. Eng. B 36, 259 (1996).Google Scholar
16 Deák, P., Heinrich, M., Snyder, L. C., Corbett, J. W., Mater. Sci. Eng. B 4, 57 (1989).Google Scholar
17 Fujiwara, H., Kondo, M., Matsuda, A., J. Appl. Phys. 91, 4181 (2002).Google Scholar
18 Shinohara, M., Niwano, M., Neo, Y., Yokoo, K., Thin Solid Films 369, 16 (2000).Google Scholar
19 Wu, Y. M., Baker, J., Hamilton, P., Nix, R. M., Surf. Sci. 295, 133 (1993).Google Scholar
20 Chabal, Y. J., Weldon, M. K., Caudano, Y., Stefanov, B. B., Raghavachari, K., Physica B 273-274, 152 (1999).Google Scholar
21 Weldon, M. K., Marsico, V. E., Chabal, Y. J., Agarwal, A., Eaglesham, D. J., Sapjeta, J., Brown, W. L., Jacobson, D. C., Caudano, Y., Christman, S. B., Chaban, E. E., J. Vac. Sci. Technol. B 15, 1065 (1997).Google Scholar
22 Lavrov, V., Weber, J., Huang, L., Nielsen, B. Bech, Phys. Rev. B 64, 035204 (2001).Google Scholar
23 Nakanishi, A., Fukata, N., Suezawa, M., phys. stat. sol. (b) 235, 115 (2003).Google Scholar
24 Kitajima, M., Ishioka, K., Nakanoya, K., Tateishi, S., Mori, T., Fukata, N., Murakami, K., Hishita, S., Jpn. J. Appl. Phys. 38, L691 (1999).Google Scholar
25 Mori, T., Otsuka, K., Umehara, N., Ishioka, K., Kitajima, M., Hishita, S., Murakami, K., Physica B: Condensed Matter 308-310, 171 (2001).Google Scholar
26 Ishioka, K., Kitajima, M., Tateishi, S., Nakanoya, K., Fukata, N., Mori, T., Murakami, K., Hishita, S., Phys. Rev. B 60, 10852 (1999).Google Scholar
27 Leitch, A. W. R., Alex, V., Weber, J., Phys. Rev. Lett. 81, 421 (1998).Google Scholar
28 Weldon, M. K., Collot, M., Chabal, Y. J., Venezia, V. C., Agarwal, A., Haynes, T. E., Eaglesham, D. J., Christman, S. B., Chaban, E. E., Appl. Phys. Lett. 73, 3721 (1998).Google Scholar
29 Stoicheff, B. P., Can. J. Phys. 35, 730 (1957).Google Scholar
30 Johanneson, P., Jakobsen, R., Stallinga, P., Nielsen, B. Bech, Phys. Rev. B 66, 235201 (2002).Google Scholar
31 Stein, H. J., Myers, S. M., Follstaedt, D. M., J. Appl. Phys. 73, 2755 (1993).Google Scholar