Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:44:48.242Z Has data issue: false hasContentIssue false

Visible Photoluminescence and Microstructure of Annealed and Chemically Etched Amorphous Si

Published online by Cambridge University Press:  28 February 2011

K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
S. Shih
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
C. C. Cho
Affiliation:
Texas Instruments Inc., P.O. Box 655936, Dallas, TX 75265.
B. E. Gnade
Affiliation:
Texas Instruments Inc., P.O. Box 655936, Dallas, TX 75265.
Get access

Abstract

We have studied the visible photoluminescence (PL) and microstructure of porous Si layers (PSLs) fabricated by the chemical etching of annealed amorphous Si (a-Si). The a-Si layers were partially crystallized by annealing between 550°C-1150°C in N2 and the PSL formed by etching in a HF-HNO3-based solution. No visible PL was observed after etching of unannealed a-Si. Visible PL was detected after etching a-Si layers first annealed at temperatures ≥725°C, coinciding with the observation of Si microcrystallites in the annealed layer prior to etching. The results suggest that an initial crystalline structure is important for fabricating luminescent PSLs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992).Google Scholar
3. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
4. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K., and White, J.M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
5. Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
6. Fathauer, R.W., George, T., Ksendzov, A., and Vasquez, R.P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
7. Noguchi, N., Suemune, I., Yamanishi, M., Hua, G.C., and Otsuka, N., Jap. J. Appl. Phys. 31, 229 (1992).Google Scholar
8. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
9. Uhlir, A., Bell System Technical J. 35, 333 (1956).Google Scholar
10. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).Google Scholar
11. Shih, S., Jung, K.H., Hsieh, T.Y., Sarathy, J., Campbell, J.C., and Kwong, D.L., Appl. Phys. Lett. 60, 1863 (1992).Google Scholar
12. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F., and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
13. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
14. Heath, J.R. and Jasinski, J.M., Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992) pp. 117122.Google Scholar
15. Shih, S., Jung, K.H., and Kwong, D.L., presented at 1992 MRS Fall Meeting, Boston, MA, 1992 (unpublished).Google Scholar