Article contents
Visible Light Emission from Erbium Doped Yttria Stabilized Zirconia
Published online by Cambridge University Press: 01 February 2011
Abstract
ABSTRACT: One of the major shortcomings of silicon (Si) as a semiconductor material is its inability to yield efficient light emission. There has been a continued interest in adding rare earth ion impurities such as erbium (Er) to the Si lattice to act as light emitting centers. The low band gap of Si however has complicated this practice by quenching and absorbing this possible emission. Increasing the band gap of the host has been successfully tried in the case of gallium nitride (GaN) [1] and Si-rich oxide (SRO) [2] alloys. A similar approach has been tried here, where Er oxide (ErOx) nanocrystals have been formed in a yttria stabilized zirconia (YSZ) host deposited on a Si (100) substrate. The YSZ is deposited as a heteroepitaxial, insulating layer on the Si substrate by a reactive sputtering technique. The Er is also incorporated by a sputtering process from a metallic target and its placement in the YSZ host can be easily controlled. The device structure formed is a simple metal contact/insulator/phosphor sandwich. The device has been found to emit visible green light at low bias voltages. The advantage of this material is that it is much more structured than SiO2 which can theoretically lead to higher emission intensity.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 5
- Cited by