Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:17:53.621Z Has data issue: false hasContentIssue false

Viscoelastric Properties of Confined Polymer Layers

Published online by Cambridge University Press:  15 February 2011

Bernard A. Costello
Affiliation:
Department of Chemical Engineering and Chemical Technology, Imperial College, Prince Consort Road, London S.W.7 2BY. United Kingdom.
Paul F. Luckham
Affiliation:
Department of Chemical Engineering and Chemical Technology, Imperial College, Prince Consort Road, London S.W.7 2BY. United Kingdom.
Get access

Abstract

The viscoelastic properties of thin films of graft copolymers of poly (hydroxy stearic acid)/poly (methyl methacrylate) adsorbed on mica surfaces have been investigated by oscillating one surface sinusoidally using a piezoelectric crystal and monitoring the response of the other on a piezo bimorph. Two distinct regions were found. At low separations the viscous response was negligible, although equilibrium force / distance profiles clearly showed that fluid could be squeezed from the intersurface gap. This was ascribed to hydrodynamic effects, the time scale of the dynamic experiments being much shorter than the equilibrium experiments. Several ways of investigating these effects further have been proposed. At larger separations the viscosity of the medium achieved its bulk value, as expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodwin, J. W. and Khidher, A. M. in Colloid and Interface Science IV edited by Kerker, M. (Academic Press, New York, 1976) p 529.Google Scholar
2. Buscall, R., Goodwin, J. W., Hawkins, M. W. and Ottewill, R. H., J. Chem. Soc Faraday Trans 1 78, 2887 (1982).Google Scholar
3. Evans, I. D. and Lips, A., J. Chem. Soc. Faraday Trans 1 86, 3413 (1990).Google Scholar
4. Costello, B. A., Luckham, P. F. and Tadros, T. F., J.Colloid Interface Sci. 152, 237 (1992).Google Scholar
5. Costello, B. A., Luckham, P. F. and Tadros, T. F., Langmuir 8, 464 (1992).Google Scholar
6. Israelachvili, J. N. and Kott, S. J., J. Colloid Interface Sci. 129, 461 (1989).Google Scholar
7. Israelachvili, J. N., Kott, S. J. and Fetters, L. J., J. Polym. Sci. B 27, 489 (1989).Google Scholar
8. Israelachvili, J. N. and Adams, G. E., J. Chem. Soc. Faraday Trans 1 74, 975 (1978).Google Scholar
9. de L. Costello, B. A. (to be published).Google Scholar
10. Israelachvili, J. N., J. Colloid Interface Sci. 110, 263 (1986).Google Scholar
11. Montfort, J. P. and Hadziiannou, G., J. Chem. Phys. 88, 7187 (1988).Google Scholar
12. Cairns, R. J. R., Ottewill, R. H., Underwood, S. M. and Tadros, T. F., J. Colloid Interface Sci. 54, 51 (1976).Google Scholar
13. Livsey, I. and Ottewill, R. H., Colloid Polym. Sci. 267, 421 (1989).Google Scholar
14. Doroszkowski, A. and Lambourne, R., J. Polym. Sci. C 34, 253 (1971).Google Scholar
15. Strivens, T. A., Colloid Polym. Sci. 265, 553 (1987).Google Scholar
16. Frith, W. J., Strivens, T. A. and Mewis, J., J. Colloid Interface Sci. 139, 55 (1990).Google Scholar
17. Israelachvili, J. N., Colloid Polym. Sci. 264, 1060 (1986).Google Scholar
18. Parker, J. L., Langmuir 8, 551 (1992).Google Scholar