Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T15:39:18.794Z Has data issue: false hasContentIssue false

Vibrational Spectra of Nitrogen-Oxygen Defects in Nitrogen Doped Silicon using Density Functional Theory

Published online by Cambridge University Press:  17 March 2011

F. Sahtout Karoui
Affiliation:
Materials Science and Engineering Dept.North Carolina State University, Raleigh, NC 27695-7916, U.S.A.
A. Karoui
Affiliation:
Materials Science and Engineering Dept.North Carolina State University, Raleigh, NC 27695-7916, U.S.A.
N. Inoue
Affiliation:
Japan Electronics & Information Technology Association, RIAST, Osaka Prefecture University, Japan.
G. A. Rozgonyi
Affiliation:
Materials Science and Engineering Dept.North Carolina State University, Raleigh, NC 27695-7916, U.S.A.
Get access

Abstract

The vibrational spectra of N-pairs and nitrogen-vacancy-oxygen defects in nitrogen doped Czochralski silicon have been investigated using density functional theory calculations. We found that 771 cm−1 and 967 cm−1 lines measured by FTIR are fingerprints for N-pairs in interstitial position. These confirm that nitrogen atoms are paired and bonded to Si atoms. Calculated local vibration modes of N2On complexes provide the best matching with observed FTIR frequency of N-O complexes. Nonetheless, VmN2On (m,n =1,2) can develop during crystal cooling or wafer processing, as revealed by local vibrational modes falling around, 806 and 815 cm−1 FTIR frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abe, T., Masui, T., Harada, H., Chikawa, J., VLSI Sc. and Tech., Eds., Bullis, W.M. and Broydo, S., p543 (1985).Google Scholar
2. Tamatsuka, M., Kobayashi, N., Tobe, S., Masui, T., ECS PV. 99–1, p. 456 (1999).Google Scholar
3. Ikari, A., Nakai, K., Tachikawa, Y., Deal, H., Hideki, Y., Ohta, Y., Masahashi, N., Hayashi, S., Hoshino, T., Ohashi, W., Solid State Phenomena, 69–70, 161 (1999).Google Scholar
4. Ammon, W. v., Holzl, R., Virbulis, J., Dornberger, E., Schmolke, R., Graf, D., J. Cryst. Growth, 226, 19, (2001).Google Scholar
5. Shimura, F., and Hockett, R. S., Appl. Phys. Lett., 48, 224 (1986).Google Scholar
6. Stein, H.J., Mat. Res. Soc. Symp. Proc., Vol. 59, p.523 (1986).Google Scholar
7. Wagner, P., Oeder, R., Zulehner, W., Appl. Phys. A, 46, 7376 (1988).Google Scholar
8. Jones, R., Oberg, S., Rasmussen, F. Berg and Nielsen, B. Bech, Phys. Rev. B, 72 (12), 1882 (1994).Google Scholar
9. Coomer, B. J., Resende, A., Goss, J. P., Jones, R., Oberg, S., Briddon, P. R., Physica B, 273–274, 520 (1999).Google Scholar
10. Umerski, A. and Jones, R., Phil. Mag. A 67, 4, 905915 (1993).Google Scholar
11. Harris, J., Phys. Rev. B 31, 1770 (1985).Google Scholar
12. Vosko, S. H., Wilk, L., Nusair, M., Can. J. Phys., 58, 1200 (1980).Google Scholar
13. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B, 13, 5188 (1976).Google Scholar
14. Goss, J. P., Hahn, I., Jones, R., Briddon, P. R., and Oberg, S., Phys. Rev. B, 67, 45206 (2003).Google Scholar
15. Cunhua, C., Canuto, S., and Fazzio, A., Phys. Rev. B, 48(24), 17806 (1993).Google Scholar
16. Rasmussen, F. Berg, Oberg, S., Jones, R., Ewels, C., Goss, J., Miro, J., and Deak, P., Mater. Sc. Forum, 196–201, 791 (1995).Google Scholar
17. Bosomworth, D. R., Hayes, W., Spray, A. R. L., Watkins, G. D., Proc. Roy. Soc. Lond.A, 317,133 (1970).Google Scholar