Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:41:34.224Z Has data issue: false hasContentIssue false

The Vibrational Modes of Model Bulk Metallic Glasses

Published online by Cambridge University Press:  31 January 2011

Peter M. Derlet
Affiliation:
[email protected], Paul Scherrer Institut, PSI-Villigen, PSI-Villigen, 5232, Switzerland
Robert Maaß
Affiliation:
[email protected], ETH Zurich, Laboratory of Metal Physics and Technology, Department of Materials, Zurich, Switzerland
Jörg F. Löffler
Affiliation:
[email protected], ETH Zurich, Laboratory of Metal Physics and Technology, Department of Materials, Zurich, Switzerland
Get access

Abstract

Bulk metallic glasses exhibit confined low and high frequency vibrational properties resulting from the significant bon and topological disorder occuring at the atomic scale. The precise nature of the low frequency modes and how they are influenced by local atomic structure remains unclear. Using standard harmonic analysis, the current work investigates various aspects of the problem by diagonalizing the Hessian of atomistic samples derived from molecular dynamics simulations via a model binary Lennard Jones pair potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Phillips, W. A. (ed.) Amorphous Solids: Low-Temperature Properties (Springer, 1981).Google Scholar
2 Garber, W., Tangerman, F. M., Allen, P. B., and Feldman, J. L., Philos. Mag. Lett. 81, 433 (2001).Google Scholar
3 Wahnstrom, G., Phys. Rev. A 44, 3752 (1991).Google Scholar
4 Shi, Y. and Falk, M.L., Phys. Rev. B 73, 214201 (2006).Google Scholar
5 Derlet, P. M., Meyer, R., Lewis, L. J., Stuhr, U., and Swygenhoven, H. Van, Phys. Rev. Lett. 87, 205501 (2001).Google Scholar
6 Derlet, P. M. and Swygenhoven, H. Van, Phys. Rev. Lett. 92, 035505 (2004).Google Scholar
7 Derlet, P. M., Petegem, S Van, Swygenhoven, H. Van, Phil. Mag. 89, 3511 (2009).Google Scholar
8 Schober, H. R. and Oligschleger, C., Phys. Rev. B 53, 11469 (1996).Google Scholar
9 Sutton, A. P., Phil. Mag. A 60, 147 (1989).Google Scholar
10 Ichitsubo, T., Hosokawa, S., Matsuda, K., Matsubara, E., Nishiyama, N., Tsutsui, S., and Baron, A. Q. R., Phys. Rev. B 76, 140201(R) (2007).Google Scholar
11 Shintani, H. and Tanaka, H., Nature Materials 7, 870 (2008).Google Scholar
12 Schober, H. R., J. Phys.: Condens. Matter 16 S2659 (2004).Google Scholar
13 Mayr, S. G., Phys. Rev. Lett. 97, 195501 (2006).Google Scholar
14 Rodney, D. and Schuh, C., Phys. Rev. Lett. 102, 235503 (2009).Google Scholar