Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:31:27.108Z Has data issue: false hasContentIssue false

VHF Plasma Deposition: A Comparative Overview

Published online by Cambridge University Press:  21 February 2011

A. Shah
Affiliation:
Institut de Microtechnique, University of Neuchâtel, Breguet 2, CH-2000 Neuchâtel, Switzerland.
J. Dutta
Affiliation:
On leave from the Indian Association for the Cultivation of Science, 700032 Calcutta, India.
N. Wyrsch
Affiliation:
Institut de Microtechnique, University of Neuchâtel, Breguet 2, CH-2000 Neuchâtel, Switzerland.
K. Prasad
Affiliation:
Institut de Microtechnique, University of Neuchâtel, Breguet 2, CH-2000 Neuchâtel, Switzerland.
H. Curtins
Affiliation:
Institut de Microtechnique, University of Neuchâtel, Breguet 2, CH-2000 Neuchâtel, Switzerland.
F. Finger
Affiliation:
At present at Forschungszentrum, D-5170 Jiilich, Germany.
A. Howling
Affiliation:
CRPP/EPFL, Av. des Bains 21, CH-1007 Lausanne, Switzerland.
Ch. Hollenstein
Affiliation:
CRPP/EPFL, Av. des Bains 21, CH-1007 Lausanne, Switzerland.
Get access

Abstract

The use of plasma excitation frequencies f in the VHF band (30–300 MHz), and particularly of f=70 MHz, for the high-rate deposition of amorphous hydrogenated silicon (a-Si:H) is described. Deposition rates, using monosilane (SiH4) as source gas, are thereby increased roughly five fold to over 10 Å/s as compared with the conventional case of RF plasma enhanced chemical vapour deposition with f=13.56 MHz. This may possibly be attributed to an enhancement in the high-energy tail of the electron energy distribution function (EEDF) of the plasma. Thereby, no noticeable deterioration in film properties is found.

Characteristics of VHF-deposited a-Si:H films are extensively reported, including properties like microstructure, hydrogen effusion behaviour and its low internal mechanical stress. High quality hydrogenated microcrystalline silicon (μc-Si:H) can be deposited at low substrate temperature and low plasma power densities thanks to VHF glow discharge. This can be linked to a reduction in sheath potential and to the energy of the ions arriving at the growing surface. Thereafter, use of VHF plasma in applications such as 100 μm thick a-Si:H layer for particle detectors and powder-free deposition of solar cells with efficiencies over 8% are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Spear, W.E., LeComber, P.G., Solid State Commun. 17, 1193 (1975).Google Scholar
2 Chittick, R.C., Alexander, J.H., Sterling, H.F., J. Electrochem. Soc. 116, 77 (1969).Google Scholar
3 Deposition technique in, Semiconductors and Semimetals, Volume 21: Hydrogenated Amorphous Silicon, Part A, edited by Pankove, J.I., Academic Press, (1984).Google Scholar
4 Bubenzer, A. and Schmitt, J. P. M., Vacuum 41, 1957 (1990).Google Scholar
5 Srinivas, K.S., Vuknic, M., Tscharner, R., Shah, A.V., Proc. of the 6th Int. Photovoltaic Science and Engineering Conference, New Delhi, 549 (1992).Google Scholar
6 Luft, W., in High-Rate Deposition of Amorphous Silicon Alloy Films, SERI Report No. SERI/TR-211–3052, 1987.Google Scholar
7 Tsuo, Y.S., Luft, W., Appl. Phys. Comm. 10, 71 (1990).Google Scholar
8 Curtins, H., Wyrsch, N. and Shah, A., Electron. Lett. 23, 228 (1987).Google Scholar
9 Curtins, H., Wyrsch, N., Favre, M., Shah, A.V., Plasma Chem. and Plasma Process. 7, 267 (1987).Google Scholar
10 Shah, A., Sauvain, E., Wyrsch, N., Curtins, H., Leutz, B., Shen, D.S., Chu, V., Wagner, S., Schade, H., Chao, H.W.A., Proc. of the 20th IEEE Photovoltaic Specialists Conference, Las Vegas, 282 (1988).CrossRefGoogle Scholar
11 Oda, S., Yasukawa, M., J. of Non-Cryst. Sol. 137&138, 677 (1991).Google Scholar
12 Chatham, H., Bhat, P.K., in Amorphous Silicon Technology-1989, edited by Madan, A., Thompson, M.J., Taylor, P.C., Hamakawa, Y., Lecomber, P.G. (Mat. Res. Soc. Symp. Proc. 149. San Diego, CA, 1989) pp. 447452.Google Scholar
13 Tanaka, M., Ninomya, K., Nakamura, N., Tsuda, S., Nakano, S., Ohnishi, M., Kuwano, Y., Jap. J. Appl. Phys. 27, 14 (1988).Google Scholar
14 Ohnishi, M., Nishiwaki, N., Uchihashi, K., Yoshida, K., Tanaka, M., Ninomiya, K., Nishikuni, M., Nakamura, N., Tsuda, S., Nakano, S., Yazaki, T., Kuwano, Y., Jap. J. Appl. Phys. 27, 40 (1988).CrossRefGoogle Scholar
15 Kato, S., Akoi, T., J. of Non-Cryst. Sol. 77&78, 813 (1985).Google Scholar
16 Oda, S., Noda, J., Matsumara, M., in Amorphous Silicon Technology edited by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G., Hamakawa, Y. (Mat. Res. Soc. Symp. Proc. 118, Reno, CA, 1988) pp. 117122.Google Scholar
17 Kuwano, Y., Tsuda, S., in Amorphous Silicon Technology edited by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G., Hamakawa, Y. (Mat. Res. Soc. Symp. Proc. 118, Reno, CA, 1988) pp. 557567.Google Scholar
18 Moisan, M., Barbeau, C., Claude, R., Ferreira, C.M., Margot, J., Paraszczak, J., , A.B., Sauvé, G., Werheimer, M.R., J. Vac. Sci. Technol. B, 9, 8 (1991).Google Scholar
19 Tscharner, R., Fischer, D., Keppner, H., Shah, A.V., Howling, A.A., Dorier, J.L., Hollenstein, C.H., Proc. of the 6th Int. Photovoltaic Science and Engineering Conference, New Delhi, 311 (1992).Google Scholar
20 Fischer, D., Keppner, H., Finger, F., Prasad, K., Shah, A., Proc. of the 10th Int. Photovoltaic Solar Energy Conference, Lisbonne, 201 (1991).Google Scholar
21 Street, R.A., Knights, J.C., Biegelson, D.K., Phys. Rev. B, 18, 1880 (1978).Google Scholar
22 Tsai, C.C., Knights, J.C., Chang, G., Wacker, B., J. Appl. Phys. 59, 2998 (1986).Google Scholar
23 Howling, A.A., Dorier, J.L., Hollenstein, Ch., Kroll, U., Finger, F., accepted for publication in J. Vac. Sci. Techol. A.Google Scholar
24 Ferreira, C.M., Loureiro, J., J. Phys. D, 16, 2471 (1983).Google Scholar
25 Oda, S., Noda, J., Matsumara, M., Jap. J. Appl. Phys. 29, 1889 (1990).Google Scholar
26 Cox, T.I., Hope, V.G.I., Hydes, A.J., Braithwaite, N.S.J., Benjamin, N.M.P., J. Phys. D, 20, 820 (1987).Google Scholar
27 Dorier, J.-L., Hollenstein, Ch., Howling, A.A., Kroll, U., accepted for publication in in J. Vac Sci Technol. A.Google Scholar
28 Jackson, W. B., Amer, N. M., Phys. Rev. B, 25, 5559 (1982).Google Scholar
29 Curtins, H., Favre, M., in Advances in Disordered Semiconductors-Vol. 1: Amorphous Semiconductors and Related Materials, Volume A, edited by Frietzsche, H., (World Scientific, Singapore, 1989), p. 329.Google Scholar
30 Wyrsch, N., Ph. D. Thesis, University of Neuchâtel, 1991.Google Scholar
31 Wyrsch, N., Finger, F., McMahon, T.J., Vanecek, M., J. of Non-Cryst. Sol. 137&138, 347 (1991).Google Scholar
32 Stutzmann, M., Phil. Mag. B, 60, 531 (1989).Google Scholar
33 Finger, F., Kroll, U., Viret, V., Shah, A., Beyer, W., Tang, X.-M., Weber, J., Howling, A., Hollenstein, Ch., to be published in J. Appl. Phys. 71, (1992).Google Scholar
34 Favre, M., Shah, A., Hubin, J., Bustarret, E., Hachicha, M.A., Basbour, S., J. of Non-Cryst. Sol. 137&138, 335 (1991).Google Scholar
35 Beyer, W., in Properties of Amorphous Silicon, EMIS Datareviews Series No. 1, 2nd edition, INSPEC, London, 1989, pp. 3738.Google Scholar
36 Curtins, H., Wyrsch, N., Favre, M., Prasad, K., Brechet, M., Shah, A.V., in Amorphous Silicon Semiconductors-Pure and Hydrogenated edited by Madan, A., Thompson, M.J., Adler, D., Hamakawa, Y. (Mat. Res. Soc. Symp. Proc. 95, Anheim, CA, 1987) pp. 249253.Google Scholar
37 Beyer, W. in Tetrahedrally-Bonded Amorphous Semiconductors, edited by Adler, D. and Frietzsche, H., Plenum Press, New York, 129 (1985).Google Scholar
38 Mahan, A.H., Chen, Y., Williamson, D.L. and Mooney, G.D., J. of Non-Cryst. Sol. 137&138, 65 (1991).Google Scholar
39 Vanacek, M., Holoubek, J. and Shah, A., Appl. Phys. Lett. 59, 2237 (1991).Google Scholar
40 Dutta, J., Kroll, U., Chabloz, P., Shah, A., submitted to Appl. Phys. Lett.Google Scholar
41 Chabloz, P., Keppner, H., Beartschi, V., Shah, A., Chatellard, D., Egger, J.-P., Denoréaz, M., Jeannet, E., Germond, J.-F., Vuilleumier, R., this volume.Google Scholar
42 Materials Issues In Microcrystalline Semiconductors, edited by Fauchet, P., Tanaka, K., Tsai, C.C. (Mat. Res. Soc. Symp. Proc. 164, Boston, MA, 1989).Google Scholar
43 Dutta, J., Unaogu, A.L., Ray, S., Barna, A.K., J. Appl. Phys. 66, 4709 (1989).Google Scholar
44 Tsai, C.C., Anderson, G.B., Wacker, B., Thompson, R., Doland, C., in Amorphous Silicon Technology-1989, edited by Madan, A., Thompson, M.J., Taylor, P.C., Hamakawa, Y., Lecomber, P.G. (Mat. Res. Soc. Symp. Proc. 149, San Diego, CA, 1989) pp. 297302.Google Scholar
45 Prasad, K., Finger, F., Curtins, H., Shah, A., Baumann, J., in Materials Issues In icrocrystalline Semiconductors, edited by Fauchet, P., Tanaka, K., Tsai, C.C. (Mat. Res. Soc. Symp. Proc. 164, Boston, MA, 1989) pp. 2732.Google Scholar
46 Prasad, K., Finger, F., Dubail, S., Shah, A., Schubert, M., J. of Non-Cryst. Sol. 137&138, 681 (1991).CrossRefGoogle Scholar
47 Prasad, K., Kroll, U., Finger, F., Shah, A., Dorier, J.-L., Howling, A., Baumann, J., Schubert, M., in Amorphous Silicon Technology-1991, edited by Madan, A., Hamakawa, Y., Thompson, M.J., Taylor, P.C., LeComber, P.G. (Mat. Res. Soc. Symp. Proc. 219, Anheim, CA, 1991) pp. 469474.Google Scholar
48 Flamm, D.L., J. Vac. Technol. A, 3, 729 (1986).Google Scholar