Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T12:22:29.677Z Has data issue: false hasContentIssue false

Very Thin Films of High Dielectric Constant Materials

Published online by Cambridge University Press:  10 February 2011

David B. Beach
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831‐6197, [email protected]
Catherine E. Vallet
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831‐6197, [email protected]
Mariappan Paranthaman
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831‐6197, [email protected]
Get access

Abstract

An all‐alkoxide route to SrBi2Ta2O9 (SBT) thin films and powders was developed. While stoichiometric gels transformed to single‐phase SBT, excess bismuth was required to obtain single‐phase SBT films on Pt substrates. An annealing temperature of 800 °C in O2 for 2 minutes was required to crystallize the films. Electrical measurements of SBT films produced under these conditions showed that films less than 2000 Å in thickness were shorted, while films of 3000 to 5000 Λ had a dielectric constant of~ 300. RBS measurements of a bismuth titanate film on Pt indicated that Pt diffuses into the dielectric layer when annealed at 700 °C in O2 for 1 minute, suggesting that interfacial reaction of these layered bismuth materials may be significant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kirlin, P., Bilodeau, S., and van Buskirk, P., Integrated Ferroelectrics 7, 307 (1995).Google Scholar
2 Beach, D. B., Laibowitz, R. B., Shaw, T. M., Grill, A., and Kane, W. F., Integrated Ferroelectrics 7, 161 (1995).Google Scholar
3 Shaw, T. M., Laibowitz, R. B., Duncombe, P. R., and Beach, D. B., Appl. Phys. Lett. 68, 3043 (1996).Google Scholar
4 Grill, A., Laibowitz, R., Beach, D., Neumayer, D., and Duncombe, P. R., Integrated Ferroelectrics, in press.Google Scholar
5 de Araujo, C. A.‐Paz, Cuchlaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature 374, 627 (1995).Google Scholar
6 Amanuma, K., Hase, T., Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
7 Boyle, T. J., Buchheit, C. D., Rodriguez, M. A., Al‐Shareef, H. N., Hernandez, B. A., Scott, B., and Ziller, J. W., J. Mater. Res. 11, 2274 (1996).Google Scholar
8 Ami, T., Hironaka, K., Isobe, C., Nagel, N., Sugiyama, M., Ikeda, Y., Watanabe, K., Machida, A., Miura, K., and Tanaka, M., Mat. Res. Soc. Symp. Ser. 415, 195 (1996).Google Scholar
9 Massiani, M.‐C., Papiernik, R., Hubert‐Plazgraf, L.G., and Daran, J. C., Polyhedron 10, 437 (1991).Google Scholar
10 Rodriguez, M. A., Boyle, T. J., Hernandez, B. A., Buchheit, C. D., and Eatough, M. O., J. Mater. Res. 11, 2282 (1996).Google Scholar
11 Gutleben, C. D., Ikeda, Y., Isobe, C., Machida, A., Ami, T., Hironaka, K., and Morita, E. Mat. Res. Soc. Symp. Ser. 415, 201 (1996).Google Scholar