Article contents
Very Low-Temperature, Gram-Scale Synthesis of Monodisperse BaTiO3 Nanocrystals via an Interfacial Hydrolysis Reaction
Published online by Cambridge University Press: 01 February 2011
Abstract
A vapor diffusion sol-gel method is reviewed for the preparation of high-quality BaTiO3 nanocrystals on the gram scale at very low temperatures. The synthesis is based on the kinetically controlled introduction of water into a solution of the bimetallic alkoxide, BaTi(O2C4H9)6, where slow hydrolysis then occurs at the vapor-solution interface followed by nucleation and nanocrystal growth at 16 °C. The resulting 6-nm, quasi-spherical nanocrystals are both monodisperse (without stabilizing agents or size selecting purification) and highly crystalline (without any post-synthesis heat treatment), and are isolated in yields near 100%. Based on new permittivity and calorimetry data, the crystal structure of the nanocrystals is most likely in the paraelectric cubic phase (space group Pm3m) at room temperature, which corroborates previous diffraction data. It was also demonstrated that the BaTiO3 nanocrystals can be doped with trivalent lanthanum cations using the same low-temperature vapor diffusion sol-gel method to yield donor-doped Ba1−xLaxTiO3, which exhibits a considerable PTCR effect.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
- 2
- Cited by