Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:40:54.944Z Has data issue: false hasContentIssue false

Vertically Aligned Carbon Nanotubes Growth Using Self-assembled Ni Nanoparticles Produced by Ion Implantation

Published online by Cambridge University Press:  01 February 2011

D. L. Baptista
Affiliation:
[email protected], UFRGS, Instituto de Física, Av. Bento Gonalves, 9500, Porto Alegre, 91501-970, Brazil
J. M. J. Lopes
Affiliation:
[email protected], UFRGS, Instituto de Física, Porto Alegre, 91501-970, Brazil
M. J. Morschbacher
Affiliation:
[email protected], UFRGS, Instituto de Física, Porto Alegre, 91501-970, Brazil
S. H. Dalal
Affiliation:
[email protected], University of Cambridge, Engineering Department, Cambridge, CB3 0FA, United Kingdom
S. P. Oei
Affiliation:
[email protected], University of Cambridge, Engineering Department, Cambridge, CB3 0FA, United Kingdom
K. B. K. Teo
Affiliation:
[email protected], University of Cambridge, Engineering Department, Cambridge, CB3 0FA, United Kingdom
W. I. Milne
Affiliation:
[email protected], University of Cambridge, Engineering Department, Cambridge, CB3 0FA, United Kingdom
F. C. Zawislak
Affiliation:
[email protected], UFRGS, Instituto de Física, Porto Alegre, 91501-970, Brazil
Get access

Abstract

An alternative method for seeding catalyst nanoparticles for carbon nanotubes and nanowires growth is presented. Ni nanoparticles are formed inside a 450 nm SiO2 film on (100) Si wafers through the implantation of Ni ions at fluences of 7.5×1015 and 1.7×1016 ions cm−2 and post-annealing treatment at 700, 900 and 1100 °C. After exposed to the surface by HF dip etching, the Ni nanoparticles are used as catalyst for the growth of vertically aligned carbon nanotubes by direct current plasma enhanced chemical vapor deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gangloff, L., Minoux, E., Teo, K.B.K., Vincent, P., Semet, V., Binh, V.T., Yang, M.H., Bu, I.Y.Y., Lacerda, R.G., Pirio, G., Schnell, J.P., Pribat, D., Hasko, D.G., Amaratunga, G.A.J., Milne, W.I. and Legagneux, P., Nanoletters 4, 1575 (2004).Google Scholar
2. Sveningsson, M., Morjan, R. E., Nerushev, O. A., Sato, Y., Bäckström, J., Campbell, E. E. B. and Rohmund, F., Appl. Phys. A 73, 409 (2001).Google Scholar
3. Teh, W. H., Smith, C. G., Teo, K. B. K., Lacerda, R. G., Amaratunga, G. A. J., Milne, W. I., Castignolles, M. and Loiseau, A., J. Vac. Sci. Technol. B 21, 4 (2003).Google Scholar
4. Adhikari, A. R., Huang, M. B., Wu, D., Dovidenko, K., Wei, B. Q., Vajtai, R., and Ajayan, P. M., Applied Physics Letters, 86, 053104, (2005).Google Scholar
5. Chhowalla, M., Teo, K. B. K., Ducati, C., Rupesinghe, N. L., Amaratunga, G. A. J., Ferrari, A. C., Roy, D., Robertson, J. and Milne, W. I., J. Appl. Phys. 90, 5308 (2001).Google Scholar
6. Teo, K. B. K., Lee, S-B., Chhowalla, M., Semet, V., Binh, Vu Thien, Groening, O., Castignolles, M., Loiseau, A., Pirio, G., Legagneux, P., Pribat, D., Hasko, D. G., Ahmed, H., Amaratunga, G. A. J. and Milne, W. I., Nanotechnology 14, 204211 (2003).Google Scholar
7. Lopes, J. M. J., Zawislak, F. C., Fichtner, P. F. P., Papaleo, R. M., Lovey, F. C., Condó, A. M. and Tolley, A. J., Applied Physics Letters, 86, 023101 (2005).Google Scholar
8. Johannessen, B., Kluth, P., Glover, C.J., Foran, G.J., Ridgway, M.C., Nucl. Instr. and Meth. B, 242, 133 (2006).Google Scholar
9. Merkulov, V. I., Guillorn, M. A., Lowndes, D. H., Simpson, M. L. and Voekl, E., Appl. Phys. Lett. 79, 1178 (2001).Google Scholar