No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The fraction of impurity atoms in the liquid at the solid-liquid interface that join the crystal, known as the segregation coefficient k, during rapid crystal growth is known to deviate away from the equilibrium value towards unity as the interface speed v increases. Several plausible models have been proposed that account qualitatively for this behavior with different functional forms of k(v). We report measurements of the segregation behavior during rapid solidification following pulsed laser melting of Bi-implanted Si. The velocity dependence and the orientation dependence of the segregation coefficient of Bi in Si has been determined to sufficient accuracy to allow us to distinguish between models. Implications for the mechanism of solute trapping are discussed.