Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T18:50:20.587Z Has data issue: false hasContentIssue false

Velocity and Orientation Dependence of Solute Trapping

Published online by Cambridge University Press:  26 February 2011

M. J. Aziz
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. Y. Tsao
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. O. Thompson
Affiliation:
Department of Materials Science, Cornell University, Ithaca, NY 14853
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

The fraction of impurity atoms in the liquid at the solid-liquid interface that join the crystal, known as the segregation coefficient k, during rapid crystal growth is known to deviate away from the equilibrium value towards unity as the interface speed v increases. Several plausible models have been proposed that account qualitatively for this behavior with different functional forms of k(v). We report measurements of the segregation behavior during rapid solidification following pulsed laser melting of Bi-implanted Si. The velocity dependence and the orientation dependence of the segregation coefficient of Bi in Si has been determined to sufficient accuracy to allow us to distinguish between models. Implications for the mechanism of solute trapping are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleton, B. R., Celler, G. K., editors, (1982). “Laser and Electron Beam Interactions with Solids.” Mat. Res. Soc. Symp. Proc. 4, 49. Elsevier North-Holland, New York.Google Scholar
Aziz, M. J., (1982). J. Appl. Phys. 53, 1158.Google Scholar
Aziz, M. J., (1983). Appl. Phys. Lett. 43, 552.Google Scholar
Aziz, M. J., Tsao, J. Y., Thompson, M. O., Peercy, P. S., and White, C. W. (1985). Mat. Res. Soc. Symp. Proc. 35, 153.Google Scholar
Aziz, M. J., White, C. W., Narayan, J., Stritzker, B. (in press). “Melting of Crystalline and Amorphous Silicon by Ruby, XeCl and KrF Laser Irradiation.” J. de Physique.Google Scholar
Baeri, P., Foti, G., Poate, J. M., Campisano, S. U., Cullis, A. G. (1981). Appl. Phys. Lett. 38, 800.Google Scholar
Baker, J. C., Cahn, J. W., (1969). Acta Metall. 17, 575.Google Scholar
Baker, J. C., Cahn, J. W., (1970). In “Solidification.” Am. Soc. Metals, Metals Park Ohio, 2358.Google Scholar
Biegelsen, D. K., Rozgonyi, G. A., Shank, C. V., editors (1985). Mat. Res. Soc. Symp. Proc. 35.Google Scholar
Cahn, J. W., Coriell, S. R., Boettinger, W. J., (1980). In “Laser and Electron Beam Processing of Materials” (White, C. W. and Peercy, P. S., eds.), p. 89. Academic Press, New York.Google Scholar
Fan, J. C. C., Johnson, N. M., editors (1984). “Energy Beam- Solid Interactions and Transient Thermal Processing.” Mat. Res. Soc. Symp. Proc. 23. Elsevier North-Holland, New York.Google Scholar
Ferris, S. D., Leamy, H. J., Poate, J. M., editors, (1979). “Laser Solid Interactions and Laser Processing.” American Institute of Physics, New York.Google Scholar
Gibbons, J. F., Hess, L. D., Sigmon, T. W., editors (1981). “Laser and Electron Beam Solid Interactions and Materials Processing.” Mat. Res. Soc. Symp. Proc. 1. Elsevier North- Holland, New York.Google Scholar
Gilmer, G. H. (1983). Mat. Res. Soc. Symp. Proc. 13, 249.Google Scholar
Hillert, M., Sundman, B. (1977). Acta Metall. 25, 11.Google Scholar
Jackson, K. A. (1983). In “Surface Modification and Alloying by Laser, Ion and Electron Beams” (Poate, J. M., Foti, G., and Jacobson, D. C., eds.), p. 51. Plenum, New York.Google Scholar
Narayan, J., Brown, W. L., Lemons, R. A., editors, (1983). “Laser- Solid Interactions and Transient Thermal Processing of Materials.” Mat. Res. Soc. Symp. Proc. 13. Elsevier North-Holland, New York.Google Scholar
Papa, T., Scudieri, F., Marinelli, M., Zammit, U., Cembali, G. (1983). J. de Physique, Colloq. C5, 73.Google Scholar
Poate, J. M., Mayer, J. W., editors, (1982). “Laser Annealing of Semiconductors.” Academic Press, New York.Google Scholar
Spaepen, F., Turnbull, D. (1982). In “Laser Annealing of Semiconductors” (Poate, J. M. and Mayer, J. W., eds.), Academic, New York.Google Scholar
Thompson, M.O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Hammond, R. B. (1983). Appl. Phys. Letts. 42, 445.Google Scholar
Turnbull, D. (1969). Contemp. Phys. 10, 473.Google Scholar
Turnbull, D., Bagley, B. G. (1975). In “Treatise on Solid State Chemistry” (Hannay, N. B., ed.) Vol.5, Plenum, New York.Google Scholar
White, C. W., Peercy, P. S., editors, (1980). “Laser and Electron Beam Processing of Materials” Academic Press, New York.Google Scholar
White, C. W., Wilson, S. R., Appleton, B. R., Young, F. W. Jr. (1980). J. Appl. Phys. 51, 738.Google Scholar