Published online by Cambridge University Press: 10 February 2011
Self-assembling protein filaments are important components of a cell's superstructure. Among these, actin filaments form the backbone of protrusions and extensions such as pseudopodia. The rates at which these structures extend cover a startlingly wide range: the acrosomal process of the sea cucumber may extend 90 μm in 10 seconds, which is more than 20 times the speed at which an epithelial goldfish keratocyte crawls. We seek to explain this range by examining the delivery of actin monomers to the growing filament ends. We show that the diffusive flux of actin monomers is adequate for fueling the slower movement of crawling cells, but is insufficient to propel the quicker acrosomal process of the sea cucumber. By introducing bulk fluid flow in response to the diffusive movement of water through the cell membrane, actin delivery can be enhanced. We compare the calculated speeds to experimental observations and discuss future refinements to the model.