Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T02:28:17.661Z Has data issue: false hasContentIssue false

Variation of the Rate of Extension of Actin Networks

Published online by Cambridge University Press:  10 February 2011

Donald J. Olbris
Affiliation:
Dept. of Chemistry, Brandeis University, Waltham, MA, 02254–9110
Judith Herzfeld*
Affiliation:
Dept. of Chemistry, Brandeis University, Waltham, MA, 02254–9110
*
*Corresponding author
Get access

Abstract

Self-assembling protein filaments are important components of a cell's superstructure. Among these, actin filaments form the backbone of protrusions and extensions such as pseudopodia. The rates at which these structures extend cover a startlingly wide range: the acrosomal process of the sea cucumber may extend 90 μm in 10 seconds, which is more than 20 times the speed at which an epithelial goldfish keratocyte crawls. We seek to explain this range by examining the delivery of actin monomers to the growing filament ends. We show that the diffusive flux of actin monomers is adequate for fueling the slower movement of crawling cells, but is insufficient to propel the quicker acrosomal process of the sea cucumber. By introducing bulk fluid flow in response to the diffusive movement of water through the cell membrane, actin delivery can be enhanced. We compare the calculated speeds to experimental observations and discuss future refinements to the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mitchison, T. J. and Cramer, L. P., Cell 84, 371 (1996).Google Scholar
2. Cooper, J. A., Annu. Rev. Physiol. 53, 585 (1991).Google Scholar
3. Condeelis, J., Annu. Rev. Cell Biol. 9, 411 (1993).Google Scholar
4. Lee, J., Ishihara, A., Theriot, J. A., and Jacobson, K., Nature 362, 167 (1993).Google Scholar
5. Theriot, J. A. and Mitchison, T. J., Nature 352, 126 (1991).Google Scholar
6. Colwin, L. H. and Colwin, A. L., Biol. Bull. 109, 357 (1955).Google Scholar
7. Dan, J. C, in Fertilization, edited by Metz, C. B. and Monroy, A. (Academic Press, New York, 1967), Vol. I, p. 237.Google Scholar
8. Inoué, S. and Tilney, L. G., J. Cell Biol. 93, 812 (1982).Google Scholar
9. Perelson, A. S. and Coutsias, E. A., J. Math Biol. 23, 361 (1986).Google Scholar
10. Peskin, C. S., Odeli, G. M., and Oster, G. F., Biophys. J. 65, 316 (1993).Google Scholar
11. Macey, R. I. and Brahm, J., in Water Transport in Biological Membranes, edited by Benga, G. (CRC Press, Boca Raton, 1989), Vol. II, p. 26.Google Scholar
12. Tilney, L. G. and Inoué, S., J. Cell Biol. 93, 820 (1982).Google Scholar
13. Agre, P., Preston, G. M., Smith, B. L., Jung, J. S., Raina, S., Moon, C., Guggino, W. B., and Nielsen, S., Am. J. Physiol. 265, F463 (1993).Google Scholar
14. DeRosier, D. J. and Tilney, L. G., in Cell and Muscle Motility, edited by Shay, J. W. (Plenum Press, New York, 1984), Vol. 5, p. 139.Google Scholar
15. Pollard, T. D., J. Cell Biol. 103, 2747 (1986).Google Scholar
16. Felder, S., PhD thesis, Washington University, 1984.Google Scholar
17. Bray, D. and White, J. G., Science 239, 885 (1988).Google Scholar
18. Luby-Phelps, K., Taylor, D. L., and Lanni, F., J. Cell Biol. 102, 2015 (1986).Google Scholar
19. Hartwig, J. H. and Shevlin, P., J. Cell Biol. 103 (1986).Google Scholar
20. Stossel, T. P., in Inflammation: Basic Principles and Clinical Correlates, edited by Gallin, J. I., Goldstein, I. M. and Snyderman, P. (Raven Press, New York, 1988).Google Scholar
21. Pollard, T. D., Fujiwara, K., Handin, R., and Wiess, G., Ann. NY Acad. Sci. 283, 218 (1977).Google Scholar