No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi5 particles during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20–50% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.