Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T14:44:41.334Z Has data issue: false hasContentIssue false

Variable Angle Spectroscopic Ellipsometry (VASE) for the Study of Ion-Beam and Growth-Modified Solids*

Published online by Cambridge University Press:  25 February 2011

John A. Woollam
Affiliation:
Department of Electrical Engineering University of Nebraska Lincoln, NE 68588-0511
Paul G. Snyder
Affiliation:
Department of Electrical Engineering University of Nebraska Lincoln, NE 68588-0511
M. C. Rost
Affiliation:
Department of Electrical Engineering University of Nebraska Lincoln, NE 68588-0511
Get access

Extract

In the most commonly used form of ellipsometry, a monochromatic collimated linearly polarized light beam is directed at an angle φ to the normal of a sample under study. The specularly reflected beam is, in general, elliptically polarized, and the state of polarization is analyzed using a second polarizer and photodetector.1 Figure 1 shows a schematic of the rotating analyzer automated spectroscopic ellipsometer used at the University of Nebraska. The angle of incidence can be set over a wide range of angles, with a precision and repeatability of ±0.01 angular degrees. A computer controls the monochromator, the azimuth of a stepper motor driven polarizer, a shutter, and the digitization of the detector signal. There are several other schemes used for acquiring ellipsometric data, and these are discussed in several sources.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research supported by NASA Lewis Grant NAG-3-95.

References

REFERENCES

1. Azzam, R.M.A., and Bashara, N.M., Ellipsometry and Polarized Light, North-Holland Publishing, New York, 1977.Google Scholar
2. Recent Developments in Ellipsometry, Bashara, N.M., Buckman, A.B., and Hall, A.C., Eds., North-Holland Publishing, Amsterdam, 1969.Google Scholar
3. Ellipsometry, Bashara, N.M., and Azzam, R.M.A., Eds., North-Holland Publishing, Amsterdam, 1976.Google Scholar
4. Bu-Abbud, G.H., Bashara, N.M., and Woollam, J.A., Thin Solid Films 38, 27 (1986).Google Scholar
5. Aspnes, D.E., “Characterization of Materials, Interfaces, and Laminar Structures by Optical Spectroscopic Techniques”, in SPIE Symposium on Microlithography, SPIE, Bellingham WA, 1986.Google Scholar
6. Snyder, P.G., Rost, M.C., Bu-Abbud, G.H., Woollam, J.A., and Alterovitz, S.A., J. Appl. Phys. 60, 3293 (1986).Google Scholar
7. Hauge, P.S., and Dill, F.H., IBM J. of Res. & Dev., 17, 472 (1973)Google Scholar
8. Aspnes, D.E., Studna, A.A., Applied Optics 14, 220 (1975).Google Scholar
9. Aspnes, D.E., J. Vac. Sci. Technol. 18, 289 (1981).Google Scholar
10. Snyder, P.G., Woollam, J.A., and Alterovitz, S.A., “Variable Angle of Incidence Spectroscopic Ellipsometry Measurement of the Franz-Keldysh Effect in MODFET Structures”, in Proceedings of the Materials Research Society, 1987, to be published.Google Scholar
11. Aspnes, D.E., Kelso, S.M., Olson, C.G., and Lynch, D.W., Phys. Rev. Letts. 48, 1863 (1982).Google Scholar
12. Aspnes, D.E. and Studna, A.A., Surf. Sci. 96, 294 (1980).Google Scholar
13. Erman, M., Theeton, J.B., Chambon, P., Kelso, S.M., and Aspnes, D.E., J. Appl. Phys. 56, 2664 (1984).Google Scholar
14. Woollam, J.A., Snyder, P.G., McCormick, A.W., Rai, A.K., Ingram, D., and Pronko, P., “Ellipsometric Measurements of MBE Grown Semiconductor Multilayer Thicknesses: A Comparative Study”, J. Applied Physics, to be published.Google Scholar
15. Woollam, J.A., Snyder, P.F., Rost, M.C., Langer, D.W., and Evans, K., Bull. Amr. Phys. Soc. 32, 471 (1987), Paper CH9.Google Scholar
16. Angus, J.C., Koidl, P., and Domitz, S., “Carbon Thin films”, in Plasma Deposited Thin Films, Mort, J., and Jansen, F., Eds., CRC Press, Boca Raton, FL, 1986.Google Scholar
17. Bu-Abbud, G.H., Mathine, D.L., Snyder, P., Woollam, J.A., Poker, D., Bennett, J., Ingram, D., and Pronko, P.P.. J. Appl. Phys. 59, 257 (1986).Google Scholar
18. Snyder, P.G., Rost, M.C., Bu-Abbud, G.H., Oh, J., Woollam, J.A., Poker, D., Aspnes, D.E., Ingram, D., and Pronko, P., J. Appl. Phys. 60, 779 (1986).Google Scholar
19. Snyder, P.G., BuAbbud, G.H., Oh, J., Woollam, J.A., Poker, D., Aspnes, D.E., Ingram, D., and Pronko, P., “Study of Mo, Au, and Ni Implanted Molybdenum Laser Mirrors By Spectroscopic Ellipsometry”, Boulder Laser Damage Symposium, 1985, National Bureau of Standards, 1987, to be published.Google Scholar
20. Snyder, P.G., Massengale, A., Memarzadeh, K., Woollam, J.A., Ingram, D.C., and Pronko, P.P., “Study of Ion Implanted Copper Laser Mirrors By Spectroscopic Ellipsometry”, Materials Research Society Symposium, Beam-Solid Interactions and Transient Processes”, 1987, to be published.Google Scholar
21. Erman, M., Theeton, J.B., J. Appl. Phys. 60, 859 (1986).Google Scholar
22. McMarr, P.J., Vedam, K., and Narayan, J., J. Appl. Phys. 59, 694 (1986).Google Scholar
23. Vasquez, R.P., Madhukar, A., and Tanquay, A.R. Jr., J. Appl. Phys. 58, 2337 (1985).Google Scholar
24. Collins, R.W., Clark, A.H., Guha, S. and Huang, C.Y., J. Appl. Phys. 57, 4566 (1985).Google Scholar
25. Jellison, G.E. Jr., and Lowndes, D.E., Appl. Phys. Lett. 47, 718 (1985).Google Scholar
26. Theeten, J.B., Erman, M., and Dimitriou, P., “Process Control in Semiconductor Technology Using Ellipsometry” in SPIE 176, 196 (1981).Google Scholar
27. Aspnes, D.E., and Chang, R.P.H., Mat. Res. Soc. Symp. 29, 217 (1984).Google Scholar
28. Kelso, S., Nemamich, R.J., Doland, C.M., Proceedings of the MRS 54, 23 (1986).Google Scholar
29. Drevillon, B., Perrin, J., Marbot, R., and Dalby, J.L., Rev. Sci. Instrs. 53, 969 (1982).Google Scholar
30. Cardona, M., “Dielectric Function and Interband Transitions in Semiconductors”, in OM85-Basic Properties of Optical Materials, NBS Special Publication 697, Feldman, A., Ed., U.S. Dept. of Commerce, Washington, D.C. 1985, and references therein.Google Scholar