Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:56:47.280Z Has data issue: false hasContentIssue false

Vapor-Liquid-Solid Growth of Cadmium Telluride Nanowires by Close-Space-Sublimation for Photovoltaic Applications

Published online by Cambridge University Press:  22 June 2011

B. L. Williams*
Affiliation:
Department of Physics, Durham University, South Road, Durham, DH1 3LE UK Now at the Stephenson Institute for Renewable Energy, University of Liverpool. L69 7ZF
B. Mendis
Affiliation:
Department of Physics, Durham University, South Road, Durham, DH1 3LE UK
L. Bowen
Affiliation:
Department of Physics, Durham University, South Road, Durham, DH1 3LE UK
D. P. Halliday
Affiliation:
Department of Physics, Durham University, South Road, Durham, DH1 3LE UK
K. Durose
Affiliation:
Department of Physics, Durham University, South Road, Durham, DH1 3LE UK Now at the Stephenson Institute for Renewable Energy, University of Liverpool. L69 7ZF
*
* Corresponding author, email: [email protected]
Get access

Abstract

Arrays of CdTe nanowires have been grown on conductive, flexible Mo substrates by the vapor-liquid-solid technique. A method of forming the arrays on a largely continuous CdTe film is described. For producing nanowire solar cells, this structure provides the advantage of preventing shunts. Nanowires having diameters in the range 100-500 nm and lengths up to 100 μm were generated. The influence of growth temperature, time and pressure on the morphology of deposited layers was investigated, and a mechanism for the generation of layer/nanowire combinations is postulated. Characterization by SEM, TEM and low temperature photoluminescence is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, L., Wu, R., Li, J., Sun, Y. F., and Jian, J. K., Materials Letters 65, 17 (2011).Google Scholar
2. Kayes, B. M., Atwater, H. A., and Lewis, N. S., Journal of Applied Physics 97, 114302 (2005).Google Scholar
3. Kelzenberg, M. D., Turner-Evans, D. B., Kayes, B. M., Lewis, N. S., and Atwater, H. A., Nano Lett. 8, 710 (2008).Google Scholar
4. Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., and Rand, J., App. Phys. Lett. 91, 233117 (2007).Google Scholar
5. Wagner, R. S. and Ellis, W. C., Applied Physics Letters 4, 89 (1964).Google Scholar
6. Givargizov, E. I. and Chernov, A. A., Kristallografiya 18 (1973).Google Scholar
7. Dubrovskii, V. G., Cirlin, G. E., Soshnikov, I. P., Tonkikh, A. A., Sibirev, N. V., Samsonenko, Y. B., and Ustinov, V. M., Physical Review B 71, 205325 (2005).Google Scholar
8. Ruiz, C. M., Saucedo, E., Martinez, O., and Bermudez, V., The Journal of Physical Chemistry C 111, 5588 (2007).Google Scholar
9. Enculescu, I., Marian, S., Monica, E., Mihaela, E., and Reinhard, N., phys. status solid. (b) 244, 1607 (2007).Google Scholar
10. Wang, X., Wang, J., Zhou, M., Zhu, H., Wang, H., and Li, Q., J. of Physical Chemistry C 113, 16951 (2009).Google Scholar
11. Neretina, S., Hughes, R A, Britten, J F, Sochinskii, N V, and Mascher, P, Nanotechnology 18, 275301 (2007).Google Scholar
12. Major, J. D., Proskuryakov, Y. Y., Durose, K., Zoppi, G., and Forbes, I., Sol. E. Mat. & Sol. Cells 94, 1107 (2010).Google Scholar
13. Chuang, L. C., Moewe, M., Chase, C., Kobayashi, N. P., and Crankshaw, S., App. Phys. Letters 90, 043115 (2007).Google Scholar
14. Plante, M. C. and LaPierre, R. R., Journal of Crystal Growth 286, 394 (2006).Google Scholar
15. Niu, H., Zhang, L., Gao, M., and Chen, Y., Langmuir 21, 4205 (2005).Google Scholar
16. Korgel, B. A., Nat Mater 5, 521 (2006).Google Scholar
17. Johansson, J., Karlsson, L. S., Patrik, C., Svensson, T., Martensson, T., Wacaser, B. A., Deppert, K., Samuelson, L., and Seifert, W., Nat Mater 5, 574 (2006).Google Scholar