Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T12:08:35.819Z Has data issue: false hasContentIssue false

Vanadium Oxides as Host Materials for Lithium and Sodium Intercalation.

Published online by Cambridge University Press:  28 February 2011

K. West
Affiliation:
Institute of Physical Chemistry, The Technical University of Denmark, DK-2800 Lyngby, Denmark
B. Zachau-Christiansen
Affiliation:
Institute of Physical Chemistry, The Technical University of Denmark, DK-2800 Lyngby, Denmark
T. Jacobsen
Affiliation:
Institute of Physical Chemistry, The Technical University of Denmark, DK-2800 Lyngby, Denmark
S. Skaarup
Affiliation:
Physics Laboratory IIIThe Technical University of Denmark, DK-2800 Lyngby, Denmark
Get access

Abstract

A number of vanadium oxides can function as host materials for the insertion of lithium and sodium. These materials are of interest as they can be utilized as electrodes in high capacity secondary batteries.

Although most of these systems are not thermodynamically stable over the entire composition interval spanned by the inserted ion, the kinetic stability of the vanadiumoxygen lattice is sufficient to ensure reversible operation at temperatures below 200 - 300°C. However, after transgression of the reversible composition interval some electrode materials exhibit characteristic changes in the voltage vs. composition curves. Depending on the guest/host system the phase formed can be either a new crystalline host phase, or an amorphous, highly defect material characterized by a smooth emf curve.

The materials studied were predominantly of two-dimensional nature: Vanadium pentoxide and its molybdenum substituted analogue, which have layerlike structures due to some of the V--O bonds being long and weak, and a series of layered trivanadates. Even in their highest oxidation state the latter host structures contain an amount of interlayer alkali metal ions, balancing the otherwise strong electrostatic repulsion between adjacent oxygen layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. West, K., in High Conductivity Solid Ionic Conductors. Recent Trends and Applications, edited by Takahashi, T. (World Scientific Publishing Company, Singapore, 1989), p. 447.Google Scholar
2. West, K., Zachau-Christiansen, B., Østergård, M.J.L., and Jacobsen, T., J. Power Sources 20 165 (1987).Google Scholar
3. West, K., Zachau-Christiansen, B., Landeira, M.J., and Jacobsen, T., in Transport- Structure Relations in Fast Ion and Mixed Conductors, edited by Poulsen, F.W., Andersen, N. Hessel, Clausen, K., Skaarup, S., and Sorensen, O. Toft (Riso National Laboratory, 1985) p. 265.Google Scholar
4. Conway, B.E., Theory and Principles of Electrode Processes (The Ronald Press Company, 1965).Google Scholar
5. Crandall, R.S., Wojtowicz, P.J., and Faughnan, B.W., Solid State Comm. 18 1409 (1976).Google Scholar
6. Berlinsky, A.J., Unruh, W.G., McKinnon, W.R., and Haering, R.R., Solid State Chem. 31 135 (1977).Google Scholar
7. Coleman, T.S., McKinnon, W.R., and Dahn, J.R., Physical Review B 29 4147 (1984)Google Scholar
8. West, K., Jacobsen, T., Zachau-Christiansen, B., and Atlung, S., Electrochim. Acta 28 97 (1983).Google Scholar
9. West, K., Zachau-Christiansen, B., Jacobsen, T., and Skaarup, S., Solid State Ionics 28–30 1128 (1988).Google Scholar
10. Skaarup, S., in Proceedings of the International Seminar on Solid State Ionic Devices, edited by Chowdari, B.V.R. and Radhakrishna, S. (Singapore, 1988) p. 35.Google Scholar
11. Galy, J., Darriet, J., and Hagenmuller, P., Rev. Chim. Minér. 8 509 (1971).Google Scholar
12. Hagenmuller, P., Galy, J., Pouchard, M., and Casalot, A., Mat. Res. Bull. 1 45 (1966).Google Scholar
13. Bachman, H.G., Ahmed, F.R., and Barnes, W.H., Z. Krist. 115 110 (1961).Google Scholar
14. Wiesener, K., Schneider, W., Ilic, D., Steger, E., Hallmeier, K.H., and Brackmann, E., J. Power Sources 20 157 (1987).CrossRefGoogle Scholar
15. Faucheur, C., Messina, R.M., and Perichon, J., J. Electrochem. Soc. 135 1872 (1988).Google Scholar
16. Zachau-Christiansen, B., West, K., and Jacobsen, T., Solid State Ionics 9&10 399 (1983).Google Scholar
17. Liaw, B., Raistrick, I.D., and Huggins, R.A., Solid State Ionics 18&19 828 (1986).CrossRefGoogle Scholar
18. Dickens, P.G. French, S.J., Hight, A.T., and Pye, M.F., Mat. Res. Bull. 14 1295 (1979).Google Scholar
19. Murphy, D.W., Christian, P.A., DiSalvo, F.J., and Waszczak, J.V., Inorg. Chem. 18 2801 (1979).Google Scholar
20. Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S.M., Fleming, R.M., Marsh, P., and Roth, R.S., J. Solid State Chem. 6563 (1986).Google Scholar
21. Doumerc, J.P., Pouchard, M., Cocciantelli, J.M., Broussely, M., and Labat, J., Extended Abstract N2 PB-13, (5th. Int. Meeting on Lithium Batteries, Beijing, 1990) p. 215.Google Scholar
22. Koksbang, R., Flemming, F., Olsen, I.I., Tønder, P.E., Brøndum, K., Consigny, M., Pedersen, K.P., and Yde-Andersen, S., Extended Abstract N°25, (The Electrochemical Society Fall Meeting, Seattle, 1990) p. 39.Google Scholar
23. Delmas, C., Brethes, S., and Ménétrier, M., Extended Abstract, (5th. Int. Meeting on Lithium Batteries, Beijing, 1990).Google Scholar
24. Pasquali, M., Pistoia, G., and Rodante, F., J. Power Sources 7 145 (1981/1982).Google Scholar
25. Kihlborg, L., Acta Chem. Scand. 21 2495 (1876).CrossRefGoogle Scholar
26. Galy, J., Casalot, A., Pouchard, M., and Hagenmuller, P., C. R. Acad. Sc. Paris C262 1055 (1966).Google Scholar
27. Wadsley, A.D., Acta Cryst. 10 261 (1957).Google Scholar
28. Evans, H.T. and Block, S., Inorg. Chem. 5 1055 (1966).Google Scholar
29. West, K., Zachau-Christiansen, B., Jacobsen, T., and Skaarup, S., Solid State Ionics 40–41 585 (1990).Google Scholar